LCM Disease of the Adult Rat: Morphological Alterations of the Brain

  • J. Löhler
  • G. Schwendemann
  • F. Lehmann-Grube


LCM virus, strain WE, multiplies readily in the brain of young adult Sprague-Dawley rats with maximum titers of close to 108 ID50/g of tissue, which are reached by day 5. Five to 6 days after the intracerebral inoculation of 106 mouse ID50 clinical signs develop which closely resemble the ones seen in mature mice infected via the brain. The morphological alterations, too, are similar in both species, although in the rat they are more widespread, involving parts of the brain which remain essentially normal in the mouse. In the rat, inflammatory reactions are found in the meninges, predominantly in the basal regions, as well as in circumventricular organs, such as plexus chorioidei, subfornical organ, area postrema, organum vasculosum laminae terminalis, and median eminence. In severe cases, the ventricular ependyma too is largely destroyed, and beneath the ependyma distentions of the intercellular spaces and structural changes of myelinated axons occur. Here, perivascular round cell infiltrates dominate the picture, whereas in other areas, such as the hypothalamus, the thalamus, and the cerebellar nuclei, a diffuse distribution of inflammatory elements is accompanied by a moderate glial reaction.

The observed predilection of pathological alterations in circumventricular organs suggests that peculiarities of this structurally and functionally unique system may play a relevant role in the pathogenesis of experimental LCM of the rat.


Ependymal Cell Perivascular Space Area Postrema Circumventricular Organ Lymphocytic Choriomeningitis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alice, F.J., and S.H. McNutt: A study of lymphocytic choriomeningitis virus. Amer. J. vet. Res. 6: 54–60 (1945).Google Scholar
  2. 2.
    Armstrong, C., and R.D. Lillie: Experimental lymphocytic choriomeningitis of monkeys and mice produced by a virus encountered in studies of the 1933 St. Louis encephalitis epidemic. Publ. Hlth Rep. (Wash.) 49.: 1019–1027 (1934).CrossRefGoogle Scholar
  3. 3.
    Bargmann, W.: Quoted in H. Hofer (6).Google Scholar
  4. 4.
    Cole, G.A., D.H. Gilden, A.A. Monjan, and N. Nathanson: Lymphocytic choriomeningitis virus: pathogenesis of acute central nervous system disease. Fed. Proc. 30: 1831–1841 (1971).PubMedGoogle Scholar
  5. 5.
    Findlay, G.M., and R.O. Stern: Pathological changes due to infection with the virus of lymphocytic choriomeningitis. J. Path. Bact. 43: 327–338 (1936).CrossRefGoogle Scholar
  6. 6.
    Hofer, H.: Zur Morphologie der circumventrikulären Organe des Zwischenhirnes der Säugetiere. Zool. Anz. Suppl. 22: 202–251 (1959).Google Scholar
  7. 7.
    Johnson, R.T., K.P. Johnson, and C.J. Edmonds: Virus-induced hydrocephalus: development of aqueductal stenosis in hamsters after mumps infection. Science 157: 1066–1067 (1967).PubMedCrossRefGoogle Scholar
  8. 8.
    Johnson, R.T., and K.P. Johnson: Hydrocephalus following viral infection: the pathology of aqueductal stenosis developing after experimental mumps virus infection. J. Neuropath. exp. Neurol. 27: 591–606 (1968).PubMedCrossRefGoogle Scholar
  9. 9.
    Johnson, R. T., and K. P. Johnson: Hydrocephalus as a sequela of experimental myxovirus infections. Exp. molec. Path. 10: 68–80 (1969).PubMedCrossRefGoogle Scholar
  10. 10.
    Lehmann-Grube, F.: Lymphocytic choriomeningitis in the mouse. I. Growth in the brain. Arch. ges. Virusforsch. 14: 351–357 (1964).PubMedCrossRefGoogle Scholar
  11. 11.
    Lehmann-Grube, F.: Lymphocytic Choriomeningitis Virus. Virology Monographs 10. Wien, New York: Springer-Verlag 1971.Google Scholar
  12. 12.
    Lépine, P., B. Kreis, and V. Sautter: Sensibilité de la souris, du cobaye et du rat au virus parisien de la chorio-meningite lymphocytaire. C.R. Soc. Biol. (Paris) 124: 420–422 (1937).Google Scholar
  13. 13.
    Lillie, R.D., and C. Armstrong: Pathology of lymphocytic choriomeningitis in mice. Arch. Path. 40: 141–152 (1945).Google Scholar
  14. 14.
    Margolis, G., and L. Kilharn: Hydrocephalus in hamsters, ferrets, rats, and mice following inoculations with Reovirus type I. II. Pathologic studies. Lab. Invest. 21: 189–198 (1969).PubMedGoogle Scholar
  15. 15.
    Monjan, A.A., G.A. Cole, and N. Nathanson: Pathogenesis of LCM disease in the rat. This Symposium.Google Scholar
  16. 16.
    Monjan, A.A., D.H. Gilden, G.A. Cole, and N. Nathanson: Cerebellar hypoplasia in the rat produced by lymphocytic choriomeningitis virus. Science 171: 194–196 (1971).PubMedCrossRefGoogle Scholar
  17. 17.
    Monjan, A.A., D.H. Gilden, G.A. Cole, and N. Nathanson: Lymphocytic choriomeningitis virus-induced cerebellar hypoplasia in neonatal rats. Ann. N.Y. Acad. Sci. 181: 202–206 (1971).CrossRefGoogle Scholar
  18. 18.
    Ogata, J., G.M. Hochwald, H. Cravioto, and J. Ransohoff: Light and electron microscopic studies of experimental hydrocephalus. Acta neuropath. (Berl.) 21: 213–223 (1972).PubMedCrossRefGoogle Scholar
  19. 19.
    Peters, A.: The fixation of central nervous tissue and the analysis of electron micrographs of the neuropil, with special reference to the cerebral cortex. In: Contemporary Research Methods in Neuroanatomy. Ed.: W.J.H. Nauta, S.O.E. Ebbesson. Berlin, Heidelberg, New York: Springer-Verlag 1970.Google Scholar
  20. 20.
    Rodriguez, E.M.: Morphological and functional relationships between the hypothalarno-neurohypophysial system and cerebrospinal fluid. In: Aspects of Neuroendocrinology. 5th Internat. Symp. on Neurosecretion, 1969. Ed.: W. Bargmann and B. Scharrer. Berlin, Heidelberg, New York: Springer-Verlag 1970.Google Scholar
  21. 21.
    Sterba, G. (Ed.): Zirkumventrikuläre Organe und Liquor. Symposium in Schloss Reinhardsbrunn, 1968. Jena: VEB Gustav Fischer Verlag 1969.Google Scholar
  22. 22.
    Traub, E.: An epidemic in a mouse colony due to the virus of acute lymphocytic choriomeningitis. J. exp. Med. 63: 533–546 (1936).Google Scholar
  23. 23.
    Vigh-Teichmann, J., and B. Vigh: Structure and function of the liquor contacting neurosecretory system. In: Aspects of Neuroendocrinology. 5th Internat. Symp. on Neurosecretion, 1969. Ed.: W. Bargmann and B. Scharrer. Berlin, Heidelberg, New York: Springer-Verlag 1970.Google Scholar
  24. 24.
    Volkert, M., and J. Hannover Larsen: Studies on immunological tolerance to LCM virus. 5. The induction of tolerance to the virus. Acta path. microbiol. scand. 63: 161–171 (1965).PubMedGoogle Scholar
  25. 25.
    Weller, R.O., K. Shulman, and R.D. Terry: Experimental hydrocephalus in young dogs: histological and ultrastructural study of the brain tissue damage. J. Neuropath. exp. Neurol. 30: 613–626 (1971).PubMedCrossRefGoogle Scholar
  26. 26.
    Wenner, H.A.: Isolation of LCM-virus in an effort to adapt poliomyelitis virus to rodents. J. infect. Dis. 83: 155–163 (1948).PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag · Heidelberg 1973

Authors and Affiliations

  • J. Löhler
    • 1
  • G. Schwendemann
    • 1
  • F. Lehmann-Grube
    • 1
  1. 1.Heinrich-Pette-Institut für experimentelle Virologie und ImmunologieUniversität HamburgHamburgBundesrepublik Deutschland

Personalised recommendations