Skip to main content

Abstract

Studies on the fate of azo and nitro compounds in the body have had a profound influence on the fields of chemotherapy, toxicology, and drug metabolism. For example, recognition that Prontosil was reductively cleaved to sulfanilamide in the body (Tréfouël et al., 1935) led to the development of a large series of sulfa drugs, as well as to the realization that substances which possess little biological activity in vitro may be transformed in the body to substances which exert potent therapeutic effects. Drugs may also undergo biotransformation to toxic derivatives. For example, it is now accepted that methemoglobinemia caused by certain aromatic nitro compounds and aromatic amines arises from the corresponding phenylhydroxy and nitroso compounds formed by the reduction of the nitro compounds or the N-hydroxylation of the amines. It is also now believed that the hepatomas caused by various azo dyes, including butter yellow, are mediated by N-hydroxylated metabolites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adelstein, S.J., Vallee, B.L.: Zinc in beef liver glutamic dehydrogenase. J. biol. Chem. 233, 589–593 (1958).

    PubMed  CAS  Google Scholar 

  • Bray, H.C., Clowes, R.C., Thorpe, W.V.: The metabolism of azobenzene and p-hydroxyazobenzene in the rabbit. Biochem. J. 49, LXV (1951).

    PubMed  CAS  Google Scholar 

  • Bray, R.C.: Xanthine oxidase. In: The Enzymes, vol. 7, ed. by P.O. Boyer, H. Lardy and K. Myrback, pp. 533–556. New York: Academic Press 1963.

    Google Scholar 

  • Bueding, F., Jolliffe, N.: Metabolism of trinitrotoluene (TNT) in vitro. J. Pharmacol. exp. Ther. 88, 300–312 (1946).

    PubMed  CAS  Google Scholar 

  • Conney, A.H., Miller, E.C., Miller, J.A.: The metabolism of methylated amino azo dyes. V. Evidence for induction of enzyme synthesis in the rat by 3-methylcholanthrene. Cancer Res. 16, 450–459 (1956).

    PubMed  CAS  Google Scholar 

  • Daniel, J.W.: Enzymatic reduction of azo food colourings. Food Cosmet. Toxicol. 5, 533–534 (1967).

    Article  PubMed  CAS  Google Scholar 

  • Daniel, J.W.: A soluble aerobic reduced nicotinamideadenenine dinucleotide (phosphate) azo reductase. Biochem. J. 111, 19p (1969).

    PubMed  CAS  Google Scholar 

  • DeRenzo, E.C.: Chemistry and biochemistry of xanthine oxidase. Advanc. Enzymol. 17, 293–328 (1956).

    CAS  Google Scholar 

  • Ernster, L., Danielson, L., Ljunngven, M.: DT diaphorase. I. Purification from the soluble fraction of rat-liver cytoplasm and properties. Biochim. biophys. Acta (Amst.) 58, 171–188 (1962).

    Article  CAS  Google Scholar 

  • Feller, D.R., Morita, M., Gillette, J.R.: Unpublished results, 1969.

    Google Scholar 

  • Feller, D.R., Morita, M., Gillette, J.R.: Enzymatic reduction of niridazole by rat liver microsomes. Biochem. Pharmacol. (1970) (in press).

    Google Scholar 

  • Fieser, L.F., Fieser, M.: Organic Chemistry, 3rd edition. Boston: D.C. Heath and Co. 1956.

    Google Scholar 

  • Fouts, J.R.: Personal communication (1957).

    Google Scholar 

  • Fouts, J.R., Brodie, B.B.: The enzymatic reduction of chloramphenicol, p-nitrobenzoic acid and other aromatic nitro compounds in mammals. J. Pharmacol. exp. Ther. 119, 197–207 (1957).

    PubMed  CAS  Google Scholar 

  • Fouts, J.R., Kamm, J.J., Brodie, B.B.: Enzymatic reduction of Prontosil and other azo dyes. J. Pharmacol. exp. Ther. 120, 291–300 (1957).

    PubMed  CAS  Google Scholar 

  • Friedman, S., Kaufman, S.: 3,4-Dihydroxyphenylethylamine ß-hydroxylase. J. biol. Chem. 240, 4763–4773 (1965).

    PubMed  CAS  Google Scholar 

  • Gigon, P.L., Gram, T.E., Gillette, J.R.: Studies on the rate of reduction of hepatic microsomal cytochrome P-450 by reduced nicotinamide adenine dinucleotide phosphate. Effect of drug substrates. Molec. Pharmacol. 5, 109–122 (1969).

    CAS  Google Scholar 

  • Gillette, J.R.: Comment to the paper of Kiese (1965). Ann. N.Y. Acad. Sci. 123, 154 (1965).

    Google Scholar 

  • Gillette, J.R., Kamm, J.J., Sasame, H.A.: Mechanism of p-nitrobenzoate reduction in liver. The possible role of cytochrome P-450 in liver microsomes. Molec. Pharmacol. 4, 541–548 (1968).

    CAS  Google Scholar 

  • Gingell, R., Bridges, J.W., Williams, R.T.: Gut flora and the metabolism of Prontosils in the rat. Biochem. J. 114, 5–6 (1969).

    Google Scholar 

  • Hernandez, P.H., Gillette, J.R., Mazel, P.: Studies on the mechanism of action of mammalian hepatic azoreductase. I. Azoreductase activity of reduced nicotinamide adenine dinucleotide phosphate-cytochrome c reductase. Biochem. Pharmacol. 16, 1859–1876 (1967a).

    Article  PubMed  CAS  Google Scholar 

  • Hernandez, P.H., Mazel, P., Gillette, J.R.: Studies on the mechanism of action of mammalian hepatic azoreductase. II. The effects of phenobarbital and 3-methylcholanthrene on carbon monoxide sensitive and insensitive azoreductase activities. Biochem. Pharmacol. 16, 1877–1888 (1967b).

    Article  PubMed  CAS  Google Scholar 

  • Hitchcock, M., Murphy, S.D.: Enzymatic reduction of O,O-(4-nitrophenyl) phosphate, and O-ethyl O-(4-nitrophenyl) benzene thiophosphonate by tissues from mammals, birds and fishes. Biochem. Pharmacol. 16, 1801–1811 (1967).

    Article  PubMed  CAS  Google Scholar 

  • Jones, R., Ryan, A.J., Wright, S.E.: The metabolism and excretion of tartrazine in rat, rabbit and man. Food Cosmet. Toxicol. 2, 447–452 (1964).

    Article  PubMed  CAS  Google Scholar 

  • Juchau, M.R.: Studies on the reduction of aromatic nitro groups in human and rodent placental homogenates. J. Pharmacol. exp. Ther. 165, 1–8 (1969).

    PubMed  CAS  Google Scholar 

  • Juchau, M.R., Krasner, J., Yaffe, S.J.: Studies on reduction of azo-linkages in human placental homogenates. Biochem. Pharmacol. 17, 1969–1979 (1968).

    Article  PubMed  CAS  Google Scholar 

  • Juchau, M.R., Krasner, J., Yaffe, S.J.: Model systems for aromatic nitro group reduction — Relationships to tissue catalyzed reagents. Biochem. Pharmacol. 19, 443–453 (1970).

    Article  PubMed  CAS  Google Scholar 

  • Kamm, J.J., Gillette, J.R.: Mechanism of stimulation of mammalian nitro reductase by flavins. Life Sci. 254–260 (1963).

    Google Scholar 

  • Kato, R., Oshtma, T., Takanaka, A.: Studies on the mechanism of nitro reduction by rat liver. Molec Pharmacol. 5, 487–498 (1969).

    CAS  Google Scholar 

  • Kato, R., Takahashi, A., Oshtma, T.: Characteristics of nitro reduction of the carcinogenic agent, 4-nitroquinolone N-oxide. Biochem. Pharmacol. 19, 45–55 (1970).

    Article  PubMed  CAS  Google Scholar 

  • Keilin, D., Mann, T.: Polyphenol oxidase. Purification, nature and properties. Proc. roy. Soc. B 125, 187–204 (1938).

    Article  CAS  Google Scholar 

  • Kielly, R.K.: Purification of liver xanthine oxidase. J. biol. Chem. 216, 405–412 (1955).

    Google Scholar 

  • Kiese, M.: Relationship of drug metabolism to methemoglobin formation. Ann. N.Y. Acad. Sci. 123, 141–154 (1965).

    Article  PubMed  CAS  Google Scholar 

  • Long, C.: Biochemists’ handbook, p. 683. Princeton, N.J.: D. Van Nostrand Co. Inc. 1961.

    Google Scholar 

  • Morita, M., Feller, D.R., Gillette, J.R.: Reduction of niridazole by rat liver xanthine oxidase. Biochem. Pharmacol. (1970) (in press).

    Google Scholar 

  • Mueller, G.C., Miller, J.A.: The reductive cleavage of 4-dimethylaminoazobenzene by rat liver: The intracellular distribution of the enzyme system and its requirements for triphosphopyridine nucleotide. J. biol. Chem. 180, 1125–1136 (1949).

    PubMed  CAS  Google Scholar 

  • Mueller, G.C., Miller, J.A.: The reductive cleavage of 4-dimethylaminoazobenzene by rat liver: Reactivation of carbon dioxide treated homogenates by riboflavin-adenine dinucleotide. J. biol. Chem. 185, 145–154 (1950).

    PubMed  CAS  Google Scholar 

  • Murray, K.N., Chaykin, S.: The reduction of nicotinamide N-oxide by xanthine oxidase. J. biol. Chem. 241, 3468–3473 (1966).

    PubMed  CAS  Google Scholar 

  • Roxan, J.J., Ryan, A.J., Wright, S.E.: Reduction of tartrazine by a Proteus species isolated from rats. Food Cosmet. Toxicol. 4, 419–426 (1966).

    Article  Google Scholar 

  • Roxan, J.J., Ryan, A.J., Wright, S.E.: Reduction of water soluble azo dyes by intestinal bacteria. Food Cosmet. Toxicol. 4, 367–369 (1967a).

    Article  Google Scholar 

  • Roxan, J.J., Ryan, A.J., Wright, S.E.: Enzymatic reduction of tartrazine by Proteus vulgaris from rats. Food Cosmet. Toxicol. 5, 645–656 (1967b).

    Article  Google Scholar 

  • Sasame, H.A.: Unpublished results, 1969.

    Google Scholar 

  • Sasame, H.A., Gillette, J.R.: Studies on the relationship between the effects of various substances on adsorption spectrum of cytochrome P-450 and the reduction of p-nitrobenzoate by mouse liver microsomes. Molec. Pharmacol. 5, 123–130 (1969).

    CAS  Google Scholar 

  • Saz, A.K., Marmur, J.: The inhibition of organic nitro-reductase by aureomycin in cell-free extracts. Proc. Soc. exp. Biol. (N.Y.) 82, 783–784 (1953).

    CAS  Google Scholar 

  • Saz, A.K., Slie, R.B.: The inhibition of organic nitro reductase by aureomycin in cell-free extracts. II. Cofactor requirements for the nitro reductase enzyme complex. Arch. Biochem. 51, 5–16 (1954a).

    Article  PubMed  CAS  Google Scholar 

  • Saz, A.K., Slie, R.B.: Reversal of aureomycin inhibition of bacterial cell-free nitro reductase by manganese. J. biol. Chem. 210, 407–412 (1954b).

    PubMed  CAS  Google Scholar 

  • Shargell, L.D.: Thesis. Influence of electron carrier systems in microsomal metabolism of drugs. Department of Pharmacology, George Washington University, Washington, D.C. (1969).

    Google Scholar 

  • Stohrer, G., Brown, G.B.: Purine N-oxides XXVIII. The reduction of purine N-oxides by xanthine oxidase. J. biol. Chem. 244, 2498–2502 (1969).

    PubMed  CAS  Google Scholar 

  • Taylor, J.D., Paul, H.E., Paul, M.F.: Metabolism of nitrofurans. III. Studies with xanthine oxidase in vitro. J. biol. Chem. 191, 223–231 (1951).

    PubMed  CAS  Google Scholar 

  • Tréfouël, J., Tréfouël, J., Nitti, F., Bovet, D.: Activité du p-aminophényl sulfamide sur les infections streptococciques expérimentales de la souris et du lapin. C.R. Soc. Biol. (Paris) 120, 756–758 (1935).

    Google Scholar 

  • Von der Decken, A., Hultin, T.: Inductive effects of 3-methylcholanthrene on enzyme activities and amino acid incorporation capacity of rat liver microsomes. Arch. Biochem. 90, 201–207 (1960).

    Article  PubMed  Google Scholar 

  • Wright, S.E., Gillette, J.R.: Unpublished results, 1964.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1971 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Gillette, J.R. (1971). Reductive Enzymes. In: Brodie, B.B., Gillette, J.R., Ackerman, H.S. (eds) Concepts in Biochemical Pharmacology. Handbook of Experimental Pharmacology / Handbuch der experimentellen Pharmakologie, vol 28 / 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-65177-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-65177-9_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-65179-3

  • Online ISBN: 978-3-642-65177-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics