Skip to main content

Model Systems in Studies of the Chemistry and the Enzymatic Activation of Oxygen

  • Chapter
Concepts in Biochemical Pharmacology

Abstract

In 1955 it was first established by isotope experiments with 18O labeled oxygen that the oxygen molecule does not only serve as an electron acceptor in biological oxidations, but is also used by special enzymes for a direct oxygenation of organic compounds (Mason et al., 1955). If both oxygen atoms of the molecule are introduced into the substrate the enzymes are termed dioxygenases (Hayaishi, 1962). The more important group of the oxygenases uses one atom of oxygen for the oxygenation of the substrate and therefore, these enzymes are called monooxygenases according to the terminology of Hayaishi (1968). These enzymes are more commonly known as mixed function oxidases (Mason, 1957) or mixed function oxygenases since they have a second function as oxidases when reducing the second oxygen atom to water according to the equation: \( RH\,\, + \,\,{O_2}\,\, + \,\,D{H_2}\,\, = \,\,ROH\,\, + \,\,{H_2}O\,\, + \,\,D \) DH2 as an external electron donor is an essential cofactor for these enzymatic reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baker, J.R., Chaykin, S.: The biosynthesis of trimethylamine — N-oxide. J. biol. Chem. 237, 1309–1313 (1962).

    PubMed  CAS  Google Scholar 

  • Barb, W.G., Baxendale, J.H., George, P., Hargrave, K.R.: Reactions of ferrous and ferric ions with hydrogen peroxide. Part I. The ferrous ion reaction. Trans. Faraday Soc. 47, 462–500 (1951).

    Article  CAS  Google Scholar 

  • Bayer, E., Hill, H.A.O., Roder, A., Williams, R.J.P.: The interaction between haem-iron and thiols. Chem. Commun. 1969, 109.

    Google Scholar 

  • Bloom, B.M., Shull, G.M.: Epoxidation of unsaturated steroids by microorganisms. J. Amer. chem. Soc. 77, 5767–5768 (1955).

    Article  CAS  Google Scholar 

  • Boyland, E., Booth, J.: The metabolic fate and excretion of drugs. Ann. Rev. Pharmacol. 2, 129–242 (1962).

    Article  CAS  Google Scholar 

  • Boyland, E., Wiltshire, G.H.: Metabolism of naphthalene by liver slices. Biochem. J. 53, 424–426 (1953).

    PubMed  CAS  Google Scholar 

  • Breslow, R., Lukens, L.N.: On the mechanism of action of an ascorbic acid-dependent nonenzymatic hydroxylating system. J. biol. Chem. 235, 292–296 (1960).

    PubMed  CAS  Google Scholar 

  • Brodie, B.B., Axelrod, J., Shore, P.A., Udenfriend, S.: Ascorbic acid in aromatic hydroxylation. II. Products formed by reaction of substrates with ascorbic acid, ferrous ion, and oxygen. J. biol. Chem. 208, 741–750 (1954).

    PubMed  CAS  Google Scholar 

  • Brodie, B.B., Gillette, J.R., Ladu, B.N.: Enzymatic metabolism of drugs and other foreign compounds. Ann. Rev. Biochem. 27, 427–453 (1958).

    Article  PubMed  CAS  Google Scholar 

  • Byington, K.H., Leibman, K.C.: Metabolism of trichloroethylene in liver microsomes. II. Identification of the reaction product as chloral hydrate. Molec. Pharmacol. 1, 247–251 (1965).

    CAS  Google Scholar 

  • Chambers, R.D., Goggin, P., Musgrave, W.K.R.: The oxidation of aromatic hydrocarbons and phenols by trifluoroperoxyacetic acid. J. chem. Soc. 1804–1807 (1959).

    Google Scholar 

  • Closs, G.L., Moss, R.A.: Carbenoid formation of arylcyclopropanes from olefins, benzal bromides, and organolithium compounds and from photolysis of aryl diazomethanes. J. Amer. chem. Soc. 86, 4042–4053 (1964).

    Article  CAS  Google Scholar 

  • Cooper, D.Y., Levin, S., Narasimhulu, S., Rosenthal, O., Estabrook, R.W.: Photochemical action spectrum of the terminal oxidase of mixed function oxidase systems. Science 147, 400–402 (1965).

    Article  PubMed  CAS  Google Scholar 

  • Cooper, D.Y., Novack, B., Forofp, O., Slade, A., Saunders, E., Narasimhulu, S., Rosenthal, O.: Photochemical action spectrum of reconstituted steroid 11β-hydroxylase of bovine adrenal mitochondria. Fed. Proc. 26, 341 Abstr. 478 (1967).

    Google Scholar 

  • Dixon, W.T., Norman, R.O.C.: An intermediate in homolytic aromatic substitution. Proc. chem. Soc. 97–99 (1963).

    Google Scholar 

  • Dorfman, L.M., Taub, A., Buchler, R.E.: Pulse radiolysis studies. I. Transient spectra and reaction-rate constants in irradiated aqueous solutions of benzene. J. chem. Physics 36, 3051–3061 (1962).

    Article  CAS  Google Scholar 

  • Estabrook, R.W., Cooper, D.Y., Rosenthal, O.: The light reversible carbon monoxide inhibition of the steroid C 21 — hydroxylase system of the adrenal cortex. Biochem. Z. 338, 741–755 (1963).

    PubMed  CAS  Google Scholar 

  • Frommer, U.: Dissertation, Gießen (1970).

    Google Scholar 

  • George, P.: The fitness of oxygen. In: Oxidases and Related Redox Systems. Ed. by King, Mason and Morrison. New York-London-Sydney: Wiley 1965.

    Google Scholar 

  • Gunsalus, I.C.: A soluble methylene hydroxylase system: structure and role of cytochrome P-450 and iron-sulfur protein components. Hoppe-Seylers Z. physiol. Chem. 349, 1610–1613 (1968).

    PubMed  CAS  Google Scholar 

  • Guroff, G., Daly, J.W., Jerina, D.M., Renson, J., Witkop, B., Udenfriend, S.: Hydroxylation-induced migrations: The NIH-shift. Science 158, 1524 (1967).

    Article  Google Scholar 

  • Hamilton, G.H.: Oxidation by molecular oxygen. II. The oxygen atom transfer mechanism for mixed-function oxidases and the model for mixed-function oxidases. J. Amer. chem. Soc. 86, 3391–3392 (1964).

    Article  CAS  Google Scholar 

  • Hayaishi, O.: Oxygenases. New York-London: Academic Press 1962.

    Google Scholar 

  • Hayaishi, O.: Oxygenases. In: Biochemie des Sauerstoffs. Ed. by B. Hess and Hj. Staudinger. Berlin-Heidelberg-New York: Springer 1968.

    Google Scholar 

  • Hayano, M.: Oxygenases in lipid and steroid metabolism. In: Hayaishi, O.: Oxygenases. New York-London: Academic Press 1962.

    Google Scholar 

  • Hayano, M., Gut, M., Dorfman, R.I., Sebek, O.K., Peterson, D.H.: Steric considerations in the enzymatic course of the hydroxylation of steroids. J. Amer. chem. Soc. 80, 2336–2337 (1958).

    Article  CAS  Google Scholar 

  • Ibne-Rasa, K.M., Edwards, J.: The mechanism of the oxidation of some aromatic amines by peroxyacetic acid. J. Amer. chem. Soc. 84, 763 (1962).

    Article  CAS  Google Scholar 

  • Igeta, H., Tsuchiya, T., Yamada, M., Arai, H.: Photo-induced oxygenation by pyrazine N-oxides. I. Chem. pharm. Bull. 16, 767 (1968).

    Article  CAS  Google Scholar 

  • Ingraham, L.L.: Biochemical mechanisms. New York-London: Wiley 1962.

    Google Scholar 

  • Jefcoate, C.R.E., Gaylor, J.L.: Ligand interactions with haemoprotein P-450. II. Influence of phenobarbital and methylcholanthrene induction processes on P-450 spectra. Biochemistry 8, 3464–3472 (1969).

    Article  PubMed  CAS  Google Scholar 

  • Jerina, D.M., Daly, W., J., Witkop, B., Zaltzman-Nirenberg, P., Udenfriend, S.: Role of arene oxide-oxepine system in the metabolism of aromatic substrates. I. In vitro conversion of benzene oxide to a premercapturic acid and a dihydrodiol. Arch. Biochem. 128, 176–183 (1968).

    Article  CAS  Google Scholar 

  • Jerina, D.M., Daly, J.W., Witkop, B., Zaltzman-Nirenberg, P., Udenfriend., S.: The role of orene oxide-oxepine systems in the metabolism of aromatic substrates. III. Formation of 1.2-naphthalene oxide from naphthalene by liver microsomes. J. Amer. chem. Soc. 90, 6525–6527 (1968).

    Article  CAS  Google Scholar 

  • Kamm, J.J., Gillette, J.R., Brodie, B.B.: Metabolism of chlorpromazine to chlorpromazine sulfoxide by liver microsomes. Fed. Proc. 17, 382 (1958).

    Google Scholar 

  • Kirmse, W.: Carbene, Carbenoide und Carbenanaloge. Weinheim: Verlag Chemie 1969.

    Google Scholar 

  • Mason, H.S.: Mechanisms of oxygen metabolism. Advanc. Enzymol. 19, 79–233 (1957).

    CAS  Google Scholar 

  • Mason, H.S., Fowlks, W.L., Peterson, E.: Oxygen transfer and electron transport by the phenolase comxple. J. Amer. chem. Soc. 77, 2914–2915 (1955).

    Article  CAS  Google Scholar 

  • Mason, H.S., North, J.C., Vanneste, M.: Microsomal mixed function oxidations: the metabolism of xenobiotics. Fed. Proc. 24, 1172–1180 (1965).

    PubMed  CAS  Google Scholar 

  • McClure, J.D., Williams, P.H.: Hydrogen peroxide-boron trifluoride etherate, a new oxidizing agent. J. org. Chem. 27, 24–26 (1952).

    Article  Google Scholar 

  • Miyake, Y., Gaylor, J.L., Mason, H.S.: Properties of a submicrosomal particle containing P 450 and flavoprotein. J. biol. Chem. 24, 5788–5797 (1968).

    Google Scholar 

  • Narasimhulu, S., Cooper, D.Y., Rosenthal, O.: Function of sulfur groups in aerobic hydroxylases. 148th Natl. Meeting Amer. Chem. Soc., Sept., Abstr. 41 (1964).

    Google Scholar 

  • Norman, R.O.C., Lindsay Smith, J.R.: Mechanisms of aromatic hydroxylation and ring-opening reactions. In: Oxidases Related Redox Systems (Vol. I). Ed. by King, Mason and Morrison. New York-London-Sydney: Wiley 1965.

    Google Scholar 

  • Norman, R.O.C., Radda, G.K.: Aromatic hydroxylation: the electrophilic character of the hydroxyl radical, and its significance in biological hydroxylation. Proc. chem. Soc. 1962, 138.

    Google Scholar 

  • Posner, H.S., Mitoma, C., Udenfriend, S.: Enzymatic hydroxylation of aromatic compounds. Arch. Biochem. 61, 431–441 (1956).

    Article  PubMed  Google Scholar 

  • Preiss, B., Bloch, K.: co-Oxidation of long chain fatty acids in rat liver. J. biol. Chem. 239, 85–88 (1964).

    PubMed  CAS  Google Scholar 

  • Renson, J., Weissbach, W., Udenfriend, S.: On the mechanisms of oxidative cleavage of aryl-alkyl ethers by liver microsomes. Molec. Pharmacol. 1, 145–147 (1965).

    CAS  Google Scholar 

  • Roder, A., Bayer, E.: Elektronenspinvesonanz-Untersuchungen an Hamin-Meraptan-Complexen. Europ. J. Biochem. 11, 89–92 (1969).

    Article  PubMed  CAS  Google Scholar 

  • Sih, C.J.: Enzymatic mechanism of steroid hydroxylation. Science 163, 1297–1300 (1969).

    Article  PubMed  CAS  Google Scholar 

  • Staudinger, Hj., Ullrich, V.: Zum Reaktionsmechanismus der nichtenzymatischen Hydroxylierung. Zugleich Untersuchungen über die Aktivierung von Sauerstoff. Z. Naturforsch. 19b, 409–413 (1964a).

    CAS  Google Scholar 

  • Staudinger, Hj., Ullrich, V.: Ãœber die Existenz des Perhydroxylradicals in wäßrigen Lösungen und seine Bedeutung bei Oxydationsreaktionen. Z. Naturforsch. 19b, 877–882 (1964b).

    CAS  Google Scholar 

  • Streith, J., Danner, B., Sigwalt, C.: Photochemistry of pyridine oxides: atomic oxygen transfer in solution; a new synthesis of phenol. Chem. Commun. 979–980 (1967).

    Google Scholar 

  • Tsuchiya, T., Arai, H., Igeta, H.: Photo-induced oxygenation by pyrazine N-oxides. II. Formation of epoxides from ethylenic compounds. Tetrahedron Letters 32, 2747–2750 (1969).

    Article  PubMed  Google Scholar 

  • Udenfriend, S., Clark, C.T., Axelrod, J., Brodie, B.B.: Ascorbic acid in aromatic hydroxylation. I. A model system for aromatic hydroxylation. J. biol. Chem. 208, 731–740 (1954).

    PubMed  CAS  Google Scholar 

  • Ullrich, V.: On the hydroxylation of cyclohexane in rat liver microsomes. Hoppe-Seylers Z. physiol. Chem. 350, 357–365 (1969a).

    Article  PubMed  CAS  Google Scholar 

  • Ullrich, V.: Oxygen activation by the iron(II)-2-mercaptobenzoic acid complex. A model for microsomal mixed function oxygenases. Z. Naturforsch. 24b, 699–704 (1969b).

    Google Scholar 

  • Ullrich, V., Amadori, E., Staudinger, Hj.: Zum Mechanismus der Hydroxylierung bei der Autoxidation von Zinn(II)phosphat-Lösungen. Z. Naturforsch. 22b, 226 (1967).

    Google Scholar 

  • Ullrich, V., Staudinger, Hj.: Aktivierung von Sauerstoff in Modellsystemen. In: Biochemie des Sauerstoffs. Ed. by B. Hess and Hj. Staudinger. Berlin-Heidelberg-New York: Springer 1968.

    Google Scholar 

  • Ullrich, V., Staudinger, Hj.: Zum Mechanismus der Hydroxylierungen mit molekularem Sauerstoff und Zinn(II)-Komplexen. Z. Naturforsch. 24b, 583–588 (1969).

    Google Scholar 

  • Ullrich, V., Wolf, J., Amadori, E., Staudinger, Hj.: The mixed function oxygenation of 4-halogenoacetanilides in rat liver microsomes and model systems. Hoppe-Seylers Z. physiol. Chem. 349, 85–94 (1968).

    Article  PubMed  CAS  Google Scholar 

  • Wong, D.T., Terriers, L.C.: Epoxidation of aldrin, isodrin, and heptachlor by rat liver microsomes. Biochem. Pharmacol. 14, 375–377 (1965).

    Article  PubMed  CAS  Google Scholar 

  • Yamazaki, H., Cvetanovec, K.J.: Collisional deactivation of excited singlet oxygen atoms and their insertion into the CH-bonds of propane. J. chem. Phys. 41, 3703–3710 (1964).

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1971 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Ullrich, V., Staudinger, H. (1971). Model Systems in Studies of the Chemistry and the Enzymatic Activation of Oxygen. In: Brodie, B.B., Gillette, J.R., Ackerman, H.S. (eds) Concepts in Biochemical Pharmacology. Handbook of Experimental Pharmacology / Handbuch der experimentellen Pharmakologie, vol 28 / 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-65177-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-65177-9_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-65179-3

  • Online ISBN: 978-3-642-65177-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics