Skip to main content

Part of the book series: Molekulare Medizin ((MOLMED))

  • 146 Accesses

Zusammenfassung

Anfang des 20. Jahrhunderts erbrachten Ellermann u. Bang (1908) den ersten Beweis, dass Leukämien und Lymphome durch Viren induziert werden können. Sie zeigten, dass eine Form der Leukämie bei Hühnern durch ein filtrierbares Agens ausgelöst wird. Diese Beobachtung konnte durch weitere Beispiele von natürlich auftretenden Tumoren in Hühnern (Sarkome, Myelomastose) gestützt werden. Über viele Jahre galten Vögel als die einzigen Lebewesen, bei denen Viren als Ursache für die Entstehung von Tumoren bekannt waren. Erst in den folgenden Jahrzehnten wurden auch bei Mäusen, Katzen und Rindern Leukämien und Lymphome entdeckt, deren Genese mit dem Einfluss von Viren in Verbindung gebracht werden konnte (Gross 1951; Jarrett et al. 1964; Van der Maaten et al. 1972).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Agnello V, Abel G, Elfahal M, Knight GB, Zhang QX (1999) Hepatitis C virus and other flaviviridae viruses enter cells via low density lipoprotein receptor. Proc Natl Acad Sci USA 96:12.766–12.771

    Google Scholar 

  • Akagi T, Shimotohno K (1993) Proliferative response of Taxi-transduced primary human T cells to anti-CD3 antibody stimulation by an interleukin-2-independent pathway. J Virol 67:1211

    PubMed  CAS  Google Scholar 

  • Akula SM, Pramod NP, Wang FZ, Chandran B (2002) Integrin α3βl (CD 49c/29) is a cellular receptor for Kaposi’s sarcoma-associated herpesvirus (KSHV/HHV-8) entry into the target cells. Cell 108:407–419

    PubMed  CAS  Google Scholar 

  • An J, Lichtenstein AK, Brent G, Rettig MB (2002) The Kaposi sarcoma-associated herpesvirus (KSHV) induces cellular interleukin 6 expressiomrole of the KSHV latency-associated nuclear antigen and the API response element. Blood 99:649–654

    PubMed  CAS  Google Scholar 

  • Anagnostopoulos I, Herbst H, Niedobitek G, Stein H (1989) Demonstration of monoclonal EBV genomes in Hodgkin’s disease and Ki-1-positive anaplastic large cell lymphoma by combined Southern blot and in situ hybridization. Blood 74:810–816

    PubMed  CAS  Google Scholar 

  • Andreone P, Zignego AL, Cursaro C et al. (1998) Prevalence of monoclonal gammopathies in patients with hepatitis C virus infection. Ann Intern Med 129:294–298

    PubMed  CAS  Google Scholar 

  • Aoki Y, Jaffe ES, Chang Yet al. (1999) Angiogenesis and hematopoiesis induced by Kaposi’s sarcoma-associated herpesvirus-encoded interleukin-6. Blood 93:4034–4043

    PubMed  CAS  Google Scholar 

  • Ardila-Osorio H, Clausse B, Mishal Z, Wiels J, Tursz T, Busson P (1999) Evidence of LMP1-TRAF3 interactions in glycosphingolipid-rich complexes of lymphoblastoid and nasopharyngeal carcinoma cells. Int J Cancer 81:645–649

    PubMed  CAS  Google Scholar 

  • Asso-Bonnet M, Feuillard J, Ferreira V et al. (1998) Relationship between IκBα constitutive expression, TNFα synthesis, and apoptosis in EBV-infected lymphoblastoid cells. Oncogene 17:1607–1615

    PubMed  CAS  Google Scholar 

  • Bais C, Santomasso B, Coso O et al. (1998) G-protein-coupled receptor of Kaposi’s sarcoma-associated herpesvirus is a viral oncogene and angiogenesis activator. Nature 391:86–89

    PubMed  CAS  Google Scholar 

  • Ballestas ME, Chatis PA, Kaye KM (1999) Efficient persistence of extrachromosomal KSHV DNA mediated by latency-associated nuclear antigen. Science 284:641–644

    PubMed  CAS  Google Scholar 

  • Bellows DS, Howell M, Pearson C, Hazlewood SA, Hardwick JM (2002) Epstein-Barr virus BALF1 is a BCL-2-like antagonist of the herpesvirus antiapoptotic BCL-2 proteins. J Virol 76:2469–2479

    PubMed  CAS  Google Scholar 

  • Ben-David Y, Lavigueur A, Cheong GY et al. (1990) Insertional activation of the p53 gene during leukaemia: a new strategy for identifying tumor suppressor genes. New Biol 2:1015

    PubMed  CAS  Google Scholar 

  • Beral V, Peterman T, Berkelman R, Jaffe H (1991) AIDS-associated non-Hodgkin lymphoma. Lancet 337:805–809

    PubMed  CAS  Google Scholar 

  • Birkmann A, Mahr K, Ensser A et al. (2001) Cell surface heparan sulfate is a receptor for human herpesvirus 8 and interacts with envelope glycoprotein K8.1. J Virol 75:11.583–11.593

    Google Scholar 

  • Bishop JM (1983) Cellular oncogenes and retroviruses. Annu Rev Biochem 52:301

    PubMed  CAS  Google Scholar 

  • Bishop JM (1995) The rise of the genetic paradigm. Genes Dev 9:1309

    PubMed  CAS  Google Scholar 

  • Blasig C, Zietz C, Haar B et al. (1997) Monocytes in Kaposi’s sarcoma lesions are productively infected by human herpesvirus 8. J Virol 71:7963–7968

    PubMed  CAS  Google Scholar 

  • Blattner WA, Kalyanaraman VS, Robert GM et al. (1982) The human type-C retrovirus, HTLV, in blacks from the Caribbean region, and relationship to adult T-cell leukemia/lymphoma. Int J Cancer 30:257

    PubMed  CAS  Google Scholar 

  • Boeke JD, Stoye JP (1997) Retrotransposons, endogenous retroviruses and the evolution of retroelements. In: Coffin JM, Hughes SH, Varmus HE (eds) Retroviruses. Cold Spring Harbor Laboratory, New York, p 343

    Google Scholar 

  • Boshoff C, Endo Y, Collins PD et al. (1997) Angiogenic and HIV-inhibitory functions of KSHV-encoded chemokines. Science 278:290–294

    PubMed  CAS  Google Scholar 

  • Brousset P, Schlaifer D, Meggetto F et al. (1994) Persistence of the same viral strain in early and late relapses of Epstein-Barr virus-associated Hodgkin’s disease. Blood 84:2447–2451

    PubMed  CAS  Google Scholar 

  • Brown DA, London E (2000) Structure and function of sphingolipid- and cholesterol-rich membrane rafts. J Biol Chem 275:17.221–17.224

    Google Scholar 

  • Burkitt D (1962) A children’s cancer dependent upon climatic factors. Nature 194:232

    PubMed  CAS  Google Scholar 

  • Burysek L, Yeow WS, Lubyova B et al. (1999) Functional analysis of human herpesvirus 8-encoded viral interferon regulatory factor 1 and its association with cellular interferon regulatory factors and p300. J Virol 73:7334–7342

    PubMed  CAS  Google Scholar 

  • Butel JS (2000) Viral carcinogenesis: revelation of molecular mechanisms and etiology of human disease. Carcinogenesis 21:405–426

    PubMed  CAS  Google Scholar 

  • Butel JS, Lednicky JA (1999) Cell and molecular biology of simian virus 40: implications for human infections and disease. J Natl Cancer Inst 91:119–134

    PubMed  CAS  Google Scholar 

  • Cabannes E, Khan G, Aillet F, Jarrett RF, Hay RT (1999) Mutations in the IκBα gene in Hodgkin’s disease suggest a tumour suppressor role for DcBa. Oncogene 18:3063–3070

    PubMed  CAS  Google Scholar 

  • Calabro ML, Sheldon J, Favero A et al. (1998) Seroprevalence of Kaposi’s sarcoma-associated herpesvirus/human herpesvirus 8 in several regions of Italy. J Hum Virol 1:207–213

    PubMed  CAS  Google Scholar 

  • Caldwell RG, Wilson JB, Anderson S J, Longnecker R (1998) Epstein-Barr virus LMP2A drives B cell development and survival in the absence of normal B cell receptor signals. Immunity 9:405–411

    PubMed  CAS  Google Scholar 

  • Caldwell RG, Brown RC, Longnecker R (2000) Epstein-Barr virus LMP2A-induced B-cell survival in two unique classes of EmuLMP2A transgenic mice. J Virol 74:1101–1113

    PubMed  CAS  Google Scholar 

  • Casato M, Mecucci C, Agnello V et al. (2002) Regression of lymphoproliferative disorder after treatment for hepatitis C virus infection in a patient with partial trisomy 3, Bcl-2 overexpression, and type II cryoglobulinemia. Blood 99:2259–2261

    PubMed  CAS  Google Scholar 

  • Cesarman E, Chang Y, Moore PS, Said JW, Knowles DM (1995) Kaposi’s sarcoma-associated herpesvirus-like DNA sequences in AIDS-related body-cavity-based lymphomas. N Engl J Med 332:1186–1191

    PubMed  CAS  Google Scholar 

  • Chan CH, Hadlock KG, Foung SK, Levy S (2001) V(H)1–69 gene is preferentially used by hepatitis C virus-associated B cell lymphomas and by normal B cells responding to the E2 viral antigen. Blood 97:1023–1026

    PubMed  CAS  Google Scholar 

  • Chang Y, Cesarman E, Pessin MS et al. (1994) Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi’s sarcoma. Science 266:1865–1869

    PubMed  CAS  Google Scholar 

  • Chatterjee M, Weyandt TB, Frisque RJ (2000) Identification of archetype and rearranged forms of BK virus in leukocytes from healthy individuals. J Med Virol 60:353–362

    PubMed  CAS  Google Scholar 

  • Chiou CJ, Poole LJ, Kim PS et al. (2002) Patterns of gene expression and a transactivation function exhibited by the vGCR (ORF74) chemokine receptor protein of Kaposi’s sarcoma-associated herpesvirus. J Virol 76:3421–3439

    PubMed  CAS  Google Scholar 

  • Chlichlia K, Busslinger M, Peter ME et al. (1997) ICE-proteases mediate HTLV-I Tax-induced apoptotic T-cell death. Oncogene 14:2265

    PubMed  CAS  Google Scholar 

  • Choi JK, Lee BS, Shim SN, Li M, Jung JU (2000) Identification of the novel K15 gene at the rightmost end of the Kaposi’s sarcoma-associated herpesvirus genome. J Virol 74:436–446

    PubMed  CAS  Google Scholar 

  • Ciminale V, Pavlakis GN, Derse D et al. (1992) Complex splicing in the human T-cell leukemia virus (HTLV) family of retroviruses: novel mRNAs and proteins produced by HTLV type I. J Virol 66:1737

    PubMed  CAS  Google Scholar 

  • Clapham P, Nagy K, Cheingsong PR et al. (1983) Productive infection and cell-free transmission of human T-cell leukemia virus in a nonlymphoid cell line. Science 222:1125

    PubMed  CAS  Google Scholar 

  • Cleary ML, Sklar J (1984) Lymphoproliferative disorders in cardiac transplant recipients are multiclonal lymphomas. Lancet 2:489–493

    PubMed  CAS  Google Scholar 

  • Coffin JM, Hughes SH, Varmus HE (1997) Retroviruses. Cold Spring Harbor Laboratory, New York

    Google Scholar 

  • Collins ND, Newbound GC, Albrecht B et al. (1998) Selective ablation of human T-cell lymphotropic virus type 1 p12I reduces viral infectivity in vivo. Blood 91:4701

    PubMed  CAS  Google Scholar 

  • Coscoy L, Ganem D (2000) Kaposi’s sarcoma-associated herpesvirus encodes two proteins that block cell surface display of MHC class I chains by enhancing their endocytosis. Proc Natl Acad Sci USA 97:8051–8056

    PubMed  CAS  Google Scholar 

  • Dalla-Favera R, Martinotti S, Gallo RC et al. (1983) Translocation and rearrangements of the c-myc oncogene locus in human undifferentiated B-cell lymphomas. Science 219:963

    PubMed  CAS  Google Scholar 

  • David H, Mendoza S, Konishi T, Miller CW (2001) Simian virus 40 is present in human lymphomas and normal blood. Cancer Lett 162:57–64

    PubMed  CAS  Google Scholar 

  • Dawson CW, Rickinson AB, Young LS (1990) Epstein-Barr virus latent membrane protein inhibits human epithelial cell differentiation. Nature 344:777–780

    PubMed  CAS  Google Scholar 

  • Dawson CW, Dawson J, Jones R, Ward K, Young LS (1998) Functional differences between BHRF1, the Epstein-Barr virus-encoded Bcl-2 homologue, and Bcl-2 in human epithelial cells. J Virol 72:9016–9024

    PubMed  CAS  Google Scholar 

  • Dawson CW, George JH, Blake SM, Longnecker R, Young LS (2001) The Epstein-Barr virus encoded latent membrane protein 2A augments signaling from latent membrane protein 1. Virology 289:192–207

    PubMed  CAS  Google Scholar 

  • De BK, Lairmore MD, Griffis K et al. (1991) Comparative analysis of nucleotide sequences of the partial envelope gene (5′ domain) among human T lymphotropic virus type I (HTLV-I) isolates. Virology 182:413

    PubMed  CAS  Google Scholar 

  • Devergne O, Hatzivassiliou E, Izumi KM et al. (1996) Association of TRAF1, TRAF2, and TRAF3 with an Epstein-Barr virus LMP1 domain important for B-lymphocyte transformation: role in NF-κB activation. Mol Cell Biol 16:7098–7108

    PubMed  CAS  Google Scholar 

  • Devergne O, Cahir McFarland ED, Mosialos G, Izumi KM, Ware CF, Kieff E (1998) Role of the TRAF binding site and NF-κB activation in Epstein-Barr virus latent membrane protein 1-induced cell gene expression. J Virol 72:7900–7908

    PubMed  CAS  Google Scholar 

  • Diamandopoulos GT (1972) Leukemia, lymphoma, and osteosarcoma induced in the Syrian golden hamster by simian virus 40. Science 176:173–175

    PubMed  CAS  Google Scholar 

  • Djerbi M, Screpanti V, Catrina AI, Bogen B, Biberfeld P, Grandien A (1999) The inhibitor of death receptor signaling, FLICE-inhibitory protein defines a new class of tumor progression factors. J Exp Med 190:1025–1032

    PubMed  CAS  Google Scholar 

  • Durand JM, Cretel E, Kaplanski G, Lefevre P, Retornaz F, Soubeyrand J (1994) Long-term results of therapy with interferon α for cryoglobulinemia associated with hepatitis C virus infection. Clin Rheumatol 13:123–125

    PubMed  CAS  Google Scholar 

  • El-Farrash MA, Saleh HA, Kuroda MJ et al. (1995) Isolation of human T-cell leukemia virus type I from a transformed T-cell line derived spontaneously from lymphocytes of a seronegative Egyptian patient with mycosis fungoides. Blood 86:1842

    PubMed  CAS  Google Scholar 

  • Eliopoulos AG, Blake SM, Floettmann JE, Rowe M, Young LS (1999) Epstein-Barr virus-encoded latent membrane protein 1 activates the JNK pathway through its extreme C terminus via a mechanism involving TRADD and TRAF2. J Virol 73:1023–1035

    PubMed  CAS  Google Scholar 

  • Ellermann V, Bang O (1908) Experimentelle Leukämie bei Hühnern. Zentralbl Bakteriol 546:595

    Google Scholar 

  • Ellis M, Chew YP, Fallis L et al. (1999) Degradation of p27(Kip) cdk inhibitor triggered by Kaposi’s sarcoma virus cyclin-cdk6 complex. EMBO J 18:644–653

    PubMed  CAS  Google Scholar 

  • Emmerich F, Meiser M, Hummel M et al. (1999) Overexpression of IκBα without inhibition of NF-κB activity and mutations in the IκBα gene in Reed-Sternberg cells. Blood 94:3129–3134

    PubMed  CAS  Google Scholar 

  • Engels N, Merchant M, Pappu R, Chan AC, Longnecker R, Wienands J (2001) Epstein-Barr virus latent membrane protein 2A (LMP2A) employs the SLP-65 signaling module. J Exp Med 194:255–264

    PubMed  CAS  Google Scholar 

  • Epstein MA, Achong BG, Barr YM (1964) Virus particles in cultured lymphoblasts from Burkitt’s lymphoma. Lancet 1:702

    PubMed  CAS  Google Scholar 

  • Felber BK, Paskalis H, Kleinman-Ewing C et al. (1985) The pX protein of HTLV-1 is a transcriptional activator of its long terminal repeats. Science 229:675

    PubMed  CAS  Google Scholar 

  • Ferri C, Zignego AL, Giuggioli D et al. (2002b) HCV and cryoglobulinemic vasculitis. Cleve Clin J Med [Suppl 2] 69:SII20–SII23

    Google Scholar 

  • Fingeroth JD, Weis JJ, Tedder TF, Strominger JL, Biro PA, Fearon DT (1984) Epstein-Barr virus receptor of human B lymphocytes is the C3d receptor CR2. Proc Natl Acad Sci USA 81:4510–4514

    PubMed  CAS  Google Scholar 

  • Floettmann JE, Rowe M (1997) Epstein-Barr virus latent membrane protein-1 (LMP1) C-terminus activation region 2 (CTAR2) maps to the far C-terminus and requires oligomerisation for NF-κB activation. Oncogene 15:1851–1858

    PubMed  CAS  Google Scholar 

  • Flore O, Rafii S, Ely S, O’Leary JJ, Hyjek EM, Cesarman E (1998) Transformation of primary human endothelial cells by Kaposi’s sarcoma-associated herpesvirus. Nature 394:588–592

    PubMed  CAS  Google Scholar 

  • Franchini G, Reitz MS J (1994) Phylogenesis and genetic complexity of the nonhuman primate retroviridae. AIDS Res Hum Retroviruses 10:1047

    PubMed  CAS  Google Scholar 

  • Franchini G, Mulloy JC, Koralnik IJ et al. (1993) The human T-cell leukemia/lymphotropic virus type I p121 protein cooperates with the E5 oncoprotein of bovine papillomavirus in cell transformation and binds the 16-kilodalton subunit of the vacuolar H+ ATPase. J Virol 67:7701

    PubMed  CAS  Google Scholar 

  • Friborg J Jr, Kong W, Hottiger MO, Nabel GJ (1999) p53 inhibition by the LANA protein of KSHV protects against cell death. Nature 402:889–894

    PubMed  CAS  Google Scholar 

  • Fruehling S, Longnecker R (1997) The immunoreceptor tyrosine-based activation motif of Epstein-Barr virus LMP2A is essential for blocking BCR-mediated signal transduction. Virology 235:241–251

    PubMed  CAS  Google Scholar 

  • Fujisawa J, Toita M, Yoshida M (1989) A unique enhancer element for the trans activator (p40tax) of human T-cell leukemia virus type I that is distinct from cyclic AMP- and 12-O-tetradecanoylphorbol-13-acetate-responsive element. J Virol 63:3234

    PubMed  CAS  Google Scholar 

  • Gao SJ, Boshoff C, Jayachandra S, Weiss RA, Chang Y, Moore PS (1997) KSHV ORF K9 (vIRF) is an oncogene which inhibits the interferon signaling pathway. Oncogene 15:1979–1985

    PubMed  CAS  Google Scholar 

  • Gessain A, Yanagihara R, Franchini G et al. (1991) Highly divergent molecular variants of human T-lymphotropic virus type I from isolated populations in Papua New Guinea and the Solomon Islands. Proc Natl Acad Sci USA 88:7694

    CAS  Google Scholar 

  • Gessain A, Gallo RC, Franchini G (1992) Low degree of human T-cell leukemia/lymphoma virus type I genetic drift in vivo as a means of monitoring viral transmission and movement of ancient human populations. J Virol 66:2288

    PubMed  CAS  Google Scholar 

  • Gessain A, Tuppin P, Kazanji M et al. (1994) A distinct molecular variant of HTLV-IIB in Gabon, Central Africa. AIDS Res Hum Retroviruses 10:753

    PubMed  CAS  Google Scholar 

  • Gires O, Zimber-Strobl U, Gonnella R et al. (1997) Latent membrane protein 1 of Epstein-Barr virus mimics a constitutively active receptor molecule. EMBO J 16:6131–6140

    PubMed  CAS  Google Scholar 

  • Gires O, Kohlhuber F, Kilger E et al. (1999) Latent membrane protein 1 of Epstein-Barr virus interacts with JAK3 and activates STAT proteins. EMBO J 18:3064–3073

    PubMed  CAS  Google Scholar 

  • Glenn M, Rainbow L, Aurad F, Davison A, Schulz TF (1999) Identification of a spliced gene from Kaposi’s sarcoma-associated herpesvirus encoding a protein with similarities to latent membrane proteins 1 and 2A of Epstein-Barr virus. J Virol 73:6953–6963

    PubMed  CAS  Google Scholar 

  • Goubau P, Desmyter J, Ghesquiere J et al. (1992) HTLV-II among pygmies. Nature 359:201

    PubMed  CAS  Google Scholar 

  • Gregory CD, Murray RJ, Edwards CF, Rickinson AB (1988) Downregulation of cell adhesion molecules LFA-3 and ICAM-1 in Epstein-Barr virus-positive Burkitt’s lymphoma underlies tumor cell escape from virus-specific T cell surveillance. J Exp Med 167:1811–1824

    PubMed  CAS  Google Scholar 

  • Gregory CD, Dive C, Henderson S et al. (1991) Activation of Epstein-Barr virus latent genes protects human B cells from death by apoptosis. Nature 349:612–614

    PubMed  CAS  Google Scholar 

  • Gross L (1951) Spontaneous leukemia developing in C3H mice following inoculation, in infancy, with Ak-leukemic extracts, or Ak embryos. Proc Soc Exp Biol Med 76:27

    PubMed  CAS  Google Scholar 

  • Grossman SR, Johannsen E, Tong X, Yalamanchili R, Kieff E (1994) The Epstein-Barr virus nuclear antigen 2 transactivator is directed to response elements by the J κ recombination signal binding protein. Proc Natl Acad Sci USA 91:7568–7572

    PubMed  CAS  Google Scholar 

  • Grossman WJ, Kimata JT, Wong FH et al. (1995) Development of leukemia in mice transgenic for the tax gene of human T-cell leukemia virus type I. Proc Natl Acad Sci USA 92:1057

    PubMed  CAS  Google Scholar 

  • Gwack Y, Byun H, Hwang S, Lim C, Choe J (2001) CREB- binding protein and histone deacetylase regulate the transcriptional activity of Kaposi’s sarcoma-associated herpesvirus open reading frame 50. J Virol 75:1909–1917

    PubMed  CAS  Google Scholar 

  • Gwack Y, Hwang S, Lim C, Won YS, Lee CH, Choe J (2002) Kaposi’s Sarcoma-associated herpesvirus open reading frame 50 stimulates the transcriptional activity of STAT3. J Biol Chem 277:6438–6442

    PubMed  CAS  Google Scholar 

  • Hai TW, Liu F, Coukos WJ et al. (1989) Transcription factor ATF cDNA clones: an extensive family of leucine zipper proteins able to selectively form DNA-binding heterodimers. Genes Dev 3:2083 [das publizierte Erratum erscheint in Genes Dev 1990 4:682]

    Google Scholar 

  • Hall WW, Liu CR, Schneewind O et al. (1991) Deleted HTLV-I provirus in blood and cutaneous lesions of patients with mycosis fungoides. Science 253:317

    PubMed  CAS  Google Scholar 

  • Heisterkamp N, Stephenson JR, Groffen J et al. (1983) Localization of the c-abl oncogene to a translocation break point in chronic myelocytic leukaemia. Nature 306:239

    PubMed  CAS  Google Scholar 

  • Henderson S, Rowe M, Gregory C et al. (1991) Induction of bcl-2 expression by Epstein-Barr virus latent membrane protein 1 protects infected B cells from programmed cell death. Cell 65:1107–1115

    PubMed  CAS  Google Scholar 

  • Henkel T, Ling PD, Hayward SD, Peterson MG (1994) Mediation of Epstein-Barr virus EBNA2 transactivation by recombination signal-binding protein J κ. Science 265:92–95

    PubMed  CAS  Google Scholar 

  • Hermine O, Lefrere F, Bronowicki JP et al. (2002) Regression of splenic lymphoma with villous lymphocytes after treatment of hepatitis C virus infection. N Engl J Med 347:89–94

    PubMed  CAS  Google Scholar 

  • Higuchi M, Izumi KM, Kieff E (2001) Epstein-Barr virus latent-infection membrane proteins are palmitoylated and raft-associated: protein 1 binds to the cytoskeleton through TNF receptor cytoplasmic factors. Proc Natl Acad Sci USA 98:4675–4680

    PubMed  CAS  Google Scholar 

  • Higuchi M, Kieff E, Izumi KM (2002) The Epstein-Barr virus latent membrane protein 1 putative Janus kinase 3 (JAK3) binding domain does not mediate JAK3 association or activation in B-lymphoma or lymphoblastoid cell lines. J Virol 76:455–459

    PubMed  CAS  Google Scholar 

  • Hino S, Kawamichi T, Funakoshi M et al. (1984) Transfusion-mediated spread of the human T-cell leukemia virus in chronic hemodialysis patients in a heavily endemic area, Nagasaki. Gann 75:1070

    PubMed  CAS  Google Scholar 

  • Hinrichs SH, Nerenberg M, Reynolds RK et al. (1987) A transgenic mouse model for human neurofibromatosis. Science 237:1340

    PubMed  CAS  Google Scholar 

  • Hinuma Y, Nagata K, Hanaoka M et al. (1981) Adult T-cell leukemia: antigen in an ATL cell line and detection of antibodies to the antigen in human sera. Proc Natl Acad Sci USA 78:6476

    PubMed  CAS  Google Scholar 

  • Hofelmayr H, Strobl LJ, Marschall G, Bornkamm GW, Zimber-Strobl U (2001) Activated Notchl can transiently substitute for EBNA2 in the maintenance of proliferation of LMP1-expressing immortalized B cells. J Virol 75:2033–2040

    PubMed  CAS  Google Scholar 

  • Hollsberg P, Wucherpfennig KW, Ausubel LJ et al. (1992) Characterization of HTLV-I in vivo infected T cell clones. IL-2-independent growth of nontransformed T cells. J Immunol 148:3256

    PubMed  CAS  Google Scholar 

  • Ikeda M, Ikeda A, Longnecker R (2001) PY motifs of Epstein-Barr virus LMP2A regulate protein stability and phosphorylation of LMP2A-associated proteins. J Virol 75:5711–5718

    PubMed  CAS  Google Scholar 

  • Imada K, Leonard WJ (2000) The Jak-STAT pathway. Mol Immunol 37:1–11

    PubMed  CAS  Google Scholar 

  • Imperiale MJ (2000) The human polyomaviruses, BKV and JCV: molecular pathogenesis of acute disease and potential role in cancer. Virology 267:1–7

    PubMed  CAS  Google Scholar 

  • Izumi KM, Kieff ED (1997) The Epstein-Barr virus oncogene product latent membrane protein 1 engages the tumor necrosis factor receptor-associated death domain protein to mediate B lymphocyte growth transformation and activate NF- κ B. Proc Natl Acad Sci USA 94:12.592–12.597

    Google Scholar 

  • Izumi KM, Kaye KM, Kieff ED (1997) The Epstein-Barr virus LMP1 amino acid sequence that engages tumor necrosis factor receptor associated factors is critical for primary B lymphocyte growth transformation. Proc Natl Acad Sci USA 94:1447–1452

    PubMed  CAS  Google Scholar 

  • Izumi KM, Cahir McFarland ED et al. (1999a) The residues between the two transformation effector sites of Epstein-Barr virus latent membrane protein 1 are not critical for B-lymphocyte growth transformation. J Virol 73:9908–9916

    PubMed  CAS  Google Scholar 

  • Izumi KM, Cahir McFarland ED, Ting AT, Riley EA, Seed B, Kieff ED (1999b) The Epstein-Barr virus oncoprotein latent membrane protein 1 engages the tumor necrosis factor receptor-associated proteins TRADD and receptor-interacting protein (RIP) but does not induce apoptosis or require RIP for NF- κ B activation. Mol Cell Biol 19:5759–5767

    PubMed  CAS  Google Scholar 

  • Jarrett RF, MacKenzie J (1999) Epstein-Barr virus and other candidate viruses in the pathogenesis of Hodgkin’s disease. Semin Hematol 36:260–269

    PubMed  CAS  Google Scholar 

  • Jarrett WF, Martin WB, Chrighton GW et al. (1964) Leukemia in the cat. Transmission experiments with leukemia (lymphosarcoma). Nature 202:566

    PubMed  CAS  Google Scholar 

  • Jarrett RF, Gallagher A, Jones DB et al. (1991) Detection of Epstein-Barr virus genomes in Hodgkin’s disease: relation to age. J Clin Pathol 44:844–848

    PubMed  CAS  Google Scholar 

  • Jayachandra S, Low KG, Thlick AE et al. (1999) Three unrelated viral transforming proteins (vIRF, EBNA2, and El A) induce the MYC oncogene through the interferon-responsive PRF element by using different transcription coadaptors. Proc Natl Acad Sci USA 96:11.566–11.571

    Google Scholar 

  • Judde JG, Lacoste V, Briere J et al. (2000) Monoclonality or oligoclonality of human herpesvirus 8 terminal repeat sequences in Kaposi’s sarcoma and other diseases. J Natl Cancer Inst 92:729–736

    PubMed  CAS  Google Scholar 

  • Kaiser C, Laux G, Eick D, Jochner N, Bornkamm GW, Kempkes B (1999) The proto-oncogene c-myc is a direct target gene of Epstein-Barr virus nuclear antigen 2. J Virol 73:4481–4484

    PubMed  CAS  Google Scholar 

  • Kanzler H, Hansmann ML, Kapp U et al. (1996) Molecular single cell analysis demonstrates the derivation of a peripheral blood-derived cell line (L1236) from the Hodgkin/Reed-Sternberg cells of a Hodgkin’s lymphoma patient. Blood 87:3429–3436

    PubMed  CAS  Google Scholar 

  • Kawakami A, Nakashima T, Sakai H et al. (1999) Inhibition of caspase cascade by HTLV-I tax through induction of NF- κ B nuclear translocation. Blood 94:3847

    PubMed  CAS  Google Scholar 

  • Kaye KM, Izumi KM, Li H et al. (1999) An Epstein-Barr virus that expresses only the first 231 LMP1 amino acids efficiently initiates primary B-lymphocyte growth transformation. J Virol 73:10525–10530

    PubMed  CAS  Google Scholar 

  • Kelsey CR, Crandall KA, Voevodin AF (1999) Different models, different trees: the geographic origin of PTLV-I. Mol Phylogenet Evol 13:336

    PubMed  CAS  Google Scholar 

  • Kieff E, Rickinson A (2001) Epstein-Barr virus and its replication. In: Knipe DM, Howley PM, Griffin DE et al. (ed) Virology, 4th edn. Lippincott, Williams & Wilkins, Philadelphia, PA, pp 2511–2573

    Google Scholar 

  • Kienzle N, Buck M, Greco S, Krauer K, Sculley TB (1999) Epstein-Barr virus-encoded RK-BARF0 protein expression. J Virol 73:8902–8906

    PubMed  CAS  Google Scholar 

  • Kieser A, Kilger E, Gires O, Ueffing M, Kolch W, Hammerschmidt W (1997) Epstein-Barr virus latent membrane protein-1 triggers AP-1 activity via the c-Jun N-terminal kinase cascade. EMBO J 16:6478–6485

    PubMed  CAS  Google Scholar 

  • Kilger E, Kieser A, Baumann M, Hammerschmidt W (1998) Epstein-Barr virus-mediated B-cell proliferation is dependent upon latent membrane protein 1, which simulates an activated CD40 receptor. EMBO J 17:1700–1709

    PubMed  CAS  Google Scholar 

  • Kirshner JR, Staskus K, Haase A, Lagunoff M, Ganem D (1999) Expression of the open reading frame 74 (G-protein-coupled receptor) gene of Kaposi’s sarcoma (KS)-associated herpesvirus: implications for KS pathogenesis. J Virol 73:6006–6014

    PubMed  CAS  Google Scholar 

  • Kitajima I, Shinohara T, Bilakovics J et al. (1992) Ablation of transplanted HTLV-I Tax-transformed tumors in mice by antisense inhibition of NF- κ -B. Science 258:1792

    PubMed  CAS  Google Scholar 

  • Kliche S, Nagel W, Kremmer E et al. (2001) Signaling by human herpesvirus 8 kaposin A through direct membrane recruitment of cytohesin-1. Mol Cell 7:833–843

    PubMed  CAS  Google Scholar 

  • Komano J, Sugiura M, Takada K (1998) Epstein-Barr virus contributes to the malignant phenotype and to apoptosis resistance in Burkitt’s lymphoma cell line Akata. J Virol 72:9150–9156

    PubMed  CAS  Google Scholar 

  • Komano J, Maruo S, Kurozumi K, Oda T, Takada K (1999) Oncogenic role of Epstein-Barr virus-encoded RNAs in Burkitt’s lymphoma cell line Akata. J Virol 73:9827–9831

    PubMed  CAS  Google Scholar 

  • Komuro A, Hayami M, Fujii H et al. (1983) Vertical transmission of adult T-cell leukemia virus. Lancet 1:240

    PubMed  CAS  Google Scholar 

  • Koralnik IJ, Fullen J, Franchini G (1993) The p12I, p13II, and p30II proteins encoded by human T-cell leukemia/ lymphotropic virus type I open reading frames I and II are localized in three different cellular compartments. J Virol 67:2360

    PubMed  CAS  Google Scholar 

  • Kube D, Vockerodt M, Weber O et al. (1999) Expression of Epstein-Barr virus nuclear antigen 1 is associated with enhanced expression of CD25 in the Hodgkin cell line L428. J Virol 73:1630–1636

    PubMed  CAS  Google Scholar 

  • Kuppers R, Rajewsky K (1998) The origin of Hodgkin and Reed/Sternberg cells in Hodgkin’s disease. Annu Rev Immunol 16:471–493

    PubMed  CAS  Google Scholar 

  • Küppers R, Rajewsky K, Zhao M et al. (1994) Hodgkin disease: Hodgkin and Reed-Sternberg cells picked from histological sections show clonal immunoglobulin gene rearrangements and appear to be derived from B cells at various stages of development. Proc Natl Acad Sci USA 91:10.962–10.966

    Google Scholar 

  • Kusano S, Raab-Traub N (2001) An Epstein-Barr virus protein interacts with Notch. J Virol 75:384–395

    PubMed  CAS  Google Scholar 

  • Kwok RP, Laurance ME, Lundblad JR et al. (1996) Control of cAMP-regulated enhancers by the viral transactivator Tax through CREB and the co-activator CBP. Nature 380:642

    PubMed  CAS  Google Scholar 

  • Lagunoff M, Majeti R, Weiss A, Ganem D (1999) Deregulated signal transduction by the K1 gene product of Kaposi’s sarcoma-associated herpesvirus. Proc Natl Acad Sci USA 96:5704–5709

    PubMed  CAS  Google Scholar 

  • Lagunoff M, Lukac DM, Ganem D (2001) Immunoreceptor tyrosine-based activation motif-dependent signaling by Kaposi’s sarcoma-associated herpesvirus K1 protein: effects on lytic viral replication. J Virol 75:5891–5898

    PubMed  CAS  Google Scholar 

  • Laherty CD, Hu HM, Opipari AW, Wang F, Dixit VM (1992) The Epstein-Barr virus LMP1 gene product induces A20 zinc finger protein expression by activating nuclear factor κ B. J Biol Chem 267:24.157–24.160

    Google Scholar 

  • Lammie GA, Smith R, Silver J et al. (1992) Proviral insertions near cyclin D1 in mouse lymphomas: a parallel for BCL1 translocations in human B-cell neoplasms. Oncogene 12:2381

    Google Scholar 

  • Lazo PA, Lee JS, Tsichlis PN (1990) Long-distance activation of the Myc protooncogene b y provirus inserion in Mlvi-1 or Mlvi-4 in rat T-cell lymphomas. Proc Natl Acad Sci USA 87:170

    PubMed  CAS  Google Scholar 

  • Lee SS, Weiss RS, Javier RT (1997) Binding of human virus oncoproteins to hD1 g/SAP97, a mammalian homolog of the Drosophila discs large tumor suppressor protein. Proc Nati Acad Sci USA 94:6670

    CAS  Google Scholar 

  • Lee H, Guo J, Li M et al. (1998) Identification of an immunoreceptor tyrosine-based activation motif of K1 transforming protein of Kaposi’s sarcoma-associated herpes-virus. Mol Cell Biol 18:5219–5228

    PubMed  CAS  Google Scholar 

  • Lee BS, Alvarez X, Ishido S, Lackner AA, Jung JU (2000) Inhibition of intracellular transport of B cell antigen receptor complexes by Kaposi’s sarcoma-associated herpes-virus K1. J Exp Med 192:11–21

    PubMed  CAS  Google Scholar 

  • Lemasson I, Thebault S, Sardet C et al. (1998) Activation of E2F-mediated transcription by human T-cell leukemia virus type I Tax protein in a pl6(INK4A)-negative T-cell line. J Biol Chem 273:23.598

    Google Scholar 

  • Lenoir GM, Bornkamm GW (1987) Burkitt’s lymphoma, a human cancer model for the study of the multistep development of cancer. Adv Viral Oncol 7:173

    CAS  Google Scholar 

  • Lenzmeier BA, Giebler HA, Nyborg JK (1998) Human T-cell leukemia virus type I Tax requires direct access to DNA for recruitment of CREB binding protein to the viral promoter. Mol Cell Biol 18:721

    PubMed  CAS  Google Scholar 

  • Levitskaya J, Sharipo A, Leonchiks A, Ciechanover A, Masucci MG (1997) Inhibition of ubiquitin/proteasome-dependent protein degradation by the Gly-Ala repeat domain of the Epstein-Barr virus nuclear antigen 1. Proc Natl Acad Sci USA 94:12.616–12.621

    Google Scholar 

  • Liu L, Eby MT, Rathore N, Sinha SK, Kumar A, Chaudhary PM (2002) The human herpes virus 8-encoded viral FLICE inhibitory protein physically associates with and persistently activates the Iκ B kinase complex. J Biol Chem 277:13.745–13.751

    Google Scholar 

  • Longnecker R (2000) Epstein-Barr virus latency: LMP2, a regulator or means for Epstein-Barr virus persistence? Adv Cancer Res 79:175–200

    PubMed  CAS  Google Scholar 

  • Longnecker R, Miller CL (1996) Regulation of Epstein-Barr virus latency by latent membrane protein 2. Trends Microbiol 4:38–42

    PubMed  CAS  Google Scholar 

  • Longnecker R, Miller CL, Miao XQ, Marchini A, Kieff E (1992) The only domain which distinguishes Epstein-Barr virus latent membrane protein 2A (LMP2A) from LMP2B is dispensable for lymphocyte infection and growth transformation in vitro; LMP2A is therefore nonessential. J Virol 66:6461–6469

    PubMed  CAS  Google Scholar 

  • Longnecker R, Miller CL, Miao XQ, Tomkinson B, Kieff E (1993) The last seven transmembrane and carboxy-terminal cytoplasmic domains of Epstein-Barr virus latent membrane protein 2 (LMP2) are dispensable for lymphocyte infection and growth transformation in vitro. J Virol 67:2006–2013

    PubMed  CAS  Google Scholar 

  • Longnecker R, Merchant M, Brown ME et al. (2000) WW-and SH3-domain interactions with Epstein-Barr virus LMP2A. Exp Cell Res 257:332–340

    PubMed  CAS  Google Scholar 

  • Low KG, Dorner LF, Fernando DB et al. (1997) Human T-cell leukemia virus type 1 Tax releases cell cycle arrest induced by p16INK4a. J Virol 71:1956

    PubMed  CAS  Google Scholar 

  • Lu S-J, Rowan S, Bani MR et al. (1994) Retroviral integration within the Fli-2 locus results in inactivation of the erythroid transcription factor NF-E2 in Friend erythroleukemias: evidence that NF-E2 is essential for globin expression. Proc Natl Acad Sci USA 91:8398

    PubMed  CAS  Google Scholar 

  • Lukac DM, Renne R, Kirshner JR, Ganem D (1998) Reactivation of Kaposi’s sarcoma-associated herpesvirus infection from latency by expression of the ORF 50 transactivator, a homolog of the EBV R protein. Virology 252:304–312

    PubMed  CAS  Google Scholar 

  • Maloney EM, Biggar RJ, Neel JV et al. (1992) Endemic human T cell lymphotropic virus type II infection among isolated Brazilian Amerindians. J Infect Dis 166:100

    PubMed  CAS  Google Scholar 

  • Mann DL, Desantis P, Mark G (1987) HTLV-I-associated B-cell CLL: indirect role for retroviruses in leukemogenesis. Science 236:1103

    PubMed  CAS  Google Scholar 

  • Means RE, Lang SM, Chung YH, Jung JU (2002) Kaposi’s sarcoma associated herpesvirus immune evasion strategies. Front Biosci 7:el85–e203

    Google Scholar 

  • Merino F, Robert-Guroff M, Clark J et al. (1984) Natural antibodies to human T-cell leukemia/lymphoma virus in healthy Venezuelan populations. Int J Cancer 34:501

    PubMed  CAS  Google Scholar 

  • Migone TS, Lin JX, Cereseto A et al. (1995) Constitutively activated Jak-STAT pathway in T cells transformed with HTLV-I. Science 269:79

    PubMed  CAS  Google Scholar 

  • Miller CL, Lee JH, Kieff E, Longnecker R (1994) An integral membrane protein (LMP2) blocks reactivation of Epstein-Barr virus from latency following surface immunoglobulin crosslinking. Proc Natl Acad Sci USA 91:772–776

    PubMed  CAS  Google Scholar 

  • Miller CL, Burkhardt AL, Lee JH et al. (1995 a) Integral membrane protein 2 of Epstein-Barr virus regulates reactivation from latency through dominant negative effects on protein-tyrosine kinases. Immunity 2:155–166

    PubMed  CAS  Google Scholar 

  • Miller WE, Earp HS, Raab-Traub N (1995 b) The Epstein-Barr virus latent membrane protein 1 induces expression of the epidermal growth factor receptor. J Virol 69:4390–4398

    PubMed  CAS  Google Scholar 

  • Mitchell T, Sugden B (1995) Stimulation of NF-κ B-mediated transcription by mutant derivatives of the latent membrane protein of Epstein-Barr virus. J Virol 69:2968–2976

    PubMed  CAS  Google Scholar 

  • Miyoshi I, Yoshimoto S, Kubonishi I et al. (1981) Transformation of normal human cord lymphocytes by co-cultivation with a lethally irradiated human T-cell line carrying type C virus particles. Gann 72:997

    PubMed  CAS  Google Scholar 

  • Molden J, Chang Y, You Y, Moore PS, Goldsmith MA (1997) A Kaposi’s sarcoma-associated herpesvirus-encoded cytokine homolog (vIL-6) activates signaling through the shared gpl30 receptor subunit. J Biol Chem 272:19.625–19.631

    Google Scholar 

  • Monaco MC, Atwood WJ, Gravell M, Tornatore CS, Major EO (1996) JC virus infection of hematopoietic progenitor cells, primary B lymphocytes, and tonsillar stromal cells: implications for viral latency. J Virol 70:7004–7012

    PubMed  CAS  Google Scholar 

  • Moore PS, Boshoff C, Weiss RA, Chang Y (1996) Molecular mimicry of human cytokine and cytokine response pathway genes by KSHV Science 274:1739–1744

    PubMed  CAS  Google Scholar 

  • Moriya K, Fujie H, Shintani Y et al. (1998) The core protein of hepatitis C virus induces hepatocellular carcinoma in transgenic mice. Nat Med 4:1065–1067

    PubMed  CAS  Google Scholar 

  • Moses AV, Fish KN, Ruhl R et al. (1999) Long-term infection and transformation of dermal microvascular endothelial cells by human herpesvirus 8. J Virol 73:6892–6902

    PubMed  CAS  Google Scholar 

  • Mosialos G, Birkenbach M, Yalamanchili R, VanArsdale T, Ware C, Kieff E (1995) The Epstein-Barr virus transforming protein LMP1 engages signaling proteins for the tumor necrosis factor receptor family. Cell 80:389–399

    PubMed  CAS  Google Scholar 

  • Mulloy JC, Crownley RW, Fullen J et al. (1996) The human T-cell leukemia/lymphotropic virus type 1 p12I proteins bind the interleukin-2 receptor beta and gamma chains and affects their expression on the cell surface. J Virol 70:3599

    PubMed  CAS  Google Scholar 

  • Mulloy JC, Kislyakova T, Ceresoto A et al. (1998) Human T-cell lymphotropic/leukemia virus type 1 Tax abrogates p53-induced cell cycle arrest and apoptosis through its CREB/ATF functional domain. J Virol 72:8852

    PubMed  CAS  Google Scholar 

  • Muralidhar S, Pumfery AM, Hassani M et al. (1998) Identification of kaposin (open reading frame K12) as a human herpesvirus 8 (Kaposi’s sarcoma-associated herpesvirus) transforming gene. J Virol 72:4980–4988

    PubMed  CAS  Google Scholar 

  • Murphy EL, Hanchard B, Figueroa JP et al. (1989) Modelling the risk of adult T-cell leukemia/lymphoma in persons infected with human T-lymphotropic virus type I. Int J Cancer 43:250

    PubMed  CAS  Google Scholar 

  • Nakamura H, Li M, Zarycki J, Jung JU (2001) Inhibition of p53 tumor suppressor by viral interferon regulatory factor. J Virol 75:7572–7582

    PubMed  CAS  Google Scholar 

  • Nerenberg M, Hinrichs SH, Reynolds RK et al. (1987) The tat gene of human T-lymphotropic virus type 1 induces mesenchymal tumors in transgenic mice. Science 237:1324

    PubMed  CAS  Google Scholar 

  • Neri A, Barriga F, Inghirami G et al. (1991) Epstein-Barr virus infection precedes clonal expansion in Burkitt’s and acquired immunodeficiency syndrome-associated lymphoma. Blood 77:1092–1095

    PubMed  CAS  Google Scholar 

  • Neuveut C, Low KG, Maldarelli F et al. (1998) Human T-cell leukemia virus type 1 Tax and cell cycle progression: role of cyclin D-cdk and p11ORb. Mol Cell Biol 18:3620

    PubMed  CAS  Google Scholar 

  • Oksenhendler E, Cazals-Hatem D, Schulz TF et al. (1998) Transient angiolymphoid hyperplasia and Kaposi’s sarcoma after primary infection with human herpesvirus 8 in a patient with human immunodeficiency virus infection. N Engl J Med 338:1585–1590

    PubMed  CAS  Google Scholar 

  • Oksenhendler E, Boulanger E, Galicier L et al. (2002) High incidence of Kaposi sarcoma-associated herpesvirus-related non-Hodgkin lymphoma in patients with HIV infection and multicentric Castleman disease. Blood 99:2331–2336

    PubMed  CAS  Google Scholar 

  • Pai S, O’Sullivan BJ, Cooper L, Thomas R, Khanna R (2002) RelB nuclear translocation mediated by C-terminal activator regions of Epstein-Barr virus-encoded latent membrane protein 1 and its effect on antigen-presenting function in B cells. J Virol 76:1914–1921

    PubMed  CAS  Google Scholar 

  • Pallesen G, Hamilton-Dutoit S J, Rowe M et al. (1991) Expression of Epstein-Barr virus replicative proteins in AIDS-related non-Hodgkin’s lymphoma cells. J Pathol 165:289–299

    PubMed  CAS  Google Scholar 

  • Parravicini C, Olsen S J, Capra M et al. (1997) Risk of Kaposi’s sarcoma-associated herpes virus transmission from donor allografts among Italian posttransplant Kaposi’s sarcoma patients. Blood 90:2826–2829

    PubMed  CAS  Google Scholar 

  • Parravicini C, Chandran B, Corbellino M et al. (2000) Differential viral protein expression in Kaposi’s sarcoma-associated herpesvirus-infected diseases: Kaposi’s sarcoma, primary effusion lymphoma, and multicentric Castleman’s disease. Am J Pathol 156:743–749

    PubMed  CAS  Google Scholar 

  • Paskalis H, Felber BK, Pavlakis G (1986) Cis-acting sequences responsible for the transcriptional activation of human T-cell leukemia virus type I constitute a conditional enhancer. Proc Natl Acad Sci USA 83:6558

    PubMed  CAS  Google Scholar 

  • Pawlotsky JM (2002) Molecular diagnosis of viral hepatitis. Gastroenterology 122:1554–1568

    PubMed  CAS  Google Scholar 

  • Payelle-Brogard B, Magnac C, Mauro FR, Mandelli F, Dighiero G (1999) Analysis of the B-cell receptor B29 (CD79b) gene in familial chronic lymphocytic leukemia. Blood 94:3516–3522

    PubMed  CAS  Google Scholar 

  • Pise-Masison CA, Radonovich M, Sakaguchi K et al. (1998) Phosphorylation of p53: a novel pathway for p53 inactivation in human T-cell lymphotropic virus type 1-transformed cells. J Virol 72:6348

    PubMed  CAS  Google Scholar 

  • Poiesz BJ, Ruscetti FW, Gazdar AF et al. (1980) Detection and isolation of type C retrovirus particles from fresh and cultured lymphocytes of a patient with cutaneous T-cell lymphoma. Proc Natl Acad Sci USA 77:7

    Google Scholar 

  • Prokova V, Mosialos G, Kardassis D (2002) Inhibition of transforming growth factor beta signaling and Smad-dependent activation of transcription by the latent membrane protein 1 of Epstein-Barr virus. J Biol Chem 277:9342–9350

    PubMed  CAS  Google Scholar 

  • Purtilo DT, Sakamoto K, Barnabei V et al. (1982) Epstein-Barr virus-induced diseases in boys with the X-linked lymphoproliferative syndrome (XLP): update on studies of the registry. Am J Med 73:49–56

    PubMed  CAS  Google Scholar 

  • Quinn ER, Chan CH, Hadlock KG, Foung SK, Flint M, Levy S (2001) The B-cell receptor of a hepatitis C virus (HCV)-associated non-Hodgkin lymphoma binds the viral E2 envelope protein, implicating HCV in lymphoma-genesis. Blood 98:3745–3749

    PubMed  CAS  Google Scholar 

  • Radkov SA, Kellam P, Boshoff C (2000) The latent nuclear antigen of Kaposi sarcoma-associated herpesvirus targets the retinoblastoma-E2F pathway and with the oncogene Hras transforms primary rat cells. Nat Med 6:1121–1127

    PubMed  CAS  Google Scholar 

  • Rainbow L, Platt GM, Simpson GR et al. (1997) The 222- to 234-kilodalton latent nuclear protein (LNA) of Kaposi’s sarcoma-associated herpesvirus (human herpesvirus 8) is encoded by orf73 and is a component of the latency-associated nuclear antigen. J Virol 71:5915–5921

    PubMed  CAS  Google Scholar 

  • Reinhardt P, Maschmeyer G, Schulze G et al. (2000) First non-imported HTLV-1 positive adult T cell leukemia/lymphoma (ATLL) in Germany. Leukemia 13:1296–1297

    Google Scholar 

  • Reisman D, Sugden B (1986) Trans activation of an Epstein-Barr viral transcriptional enhancer by the Epstein-Barr viral nuclear antigen 1. Mol Cell Biol 6:3838–3846

    PubMed  CAS  Google Scholar 

  • Rickinson A, Kieff E (2001) Epstein-Barr virus, 2573–2627. In: Knipe DM, Howley PM, Griffin DE, Lamb RA, Martin MA, Roizman B, Straus SE (eds) Virology, 4th edn. Lippincott, Williams & Wilkins, Philadelphia, PA

    Google Scholar 

  • Rivas C, Thlick AE, Parravicini C, Moore PS, Chang Y (2001) Kaposi’s sarcoma-associated herpesvirus LANA2 is a B-cell-specific latent viral protein that inhibits p53. J Virol 75:429–438

    PubMed  CAS  Google Scholar 

  • Rosa D, Saletti G, Valiante N et al. (2002) HCV activates naive B cells via CD81 engagement: a pathogenetic mechanism for B cell disturbances in HCV infection, 9th International Meeeting on HCV and Related Viruses, San Diego, 7th-11th July, program and abstract book, p 63

    Google Scholar 

  • Rosin O, Koch C, Schmitt I et al. (1998) A human T-cell leukemia virus Tax variant incapable of activating NF-κB retains its immortalizing potential for primary T-lymphocytes. J Biol Chem 273:6698

    PubMed  CAS  Google Scholar 

  • Rothenberger S, Rousseaux M, Knecht H, Bender FC, Legier DF, Bron C (2002) Association of the Epstein-Barr virus latent membrane protein 1 with lipid rafts is mediated through its N-terminal region. Cell Mol Life Sci 59:171–180

    PubMed  CAS  Google Scholar 

  • Rowe M, Khanna R, Jacob CA et al. (1995) Restoration of endogenous antigen processing in Burkitt’s lymphoma cells by Epstein-Barr virus latent membrane protein-1: coordinate up-regulation of peptide transporters and HLA-class I antigen expression. Eur J Immunol 25:1374–1384

    PubMed  CAS  Google Scholar 

  • Sadler R, Wu L, Forghani B et al. (1999) A complex translational program generates multiple novel proteins from the latently expressed kaposin (K12) locus of Kaposi’s sarcoma-associated herpesvirus. J Virol 73:5722–5730

    PubMed  CAS  Google Scholar 

  • Sarid R, Sato T, Bohenzky RA, Russo JJ, Chang Y (1997) Kaposi’s sarcoma-associated herpesvirus encodes a functional bcl-2 homologue. Nat Med 3:293–298

    PubMed  CAS  Google Scholar 

  • Schang LM, Rosenberg A, Schaffer PA (2000) Roscovitine, a specific inhibitor of cellular cyclin-dependent kinases, inhibits herpes simplex virus DNA synthesis in the presence of viral early proteins. J Virol 74:2107–2120

    PubMed  CAS  Google Scholar 

  • Schulz TF (2000) Kaposi’s sarcoma-associated herpesvirus (human herpesvirus 8): epidemiology and pathogenesis. J Antimicrob Chemother 45 Suppl T3:15–27

    Google Scholar 

  • Schulz TF (2001) KSHV/HHV8-associated lymphoproliferations in the AIDS setting. Eur J Cancer 37:1217–1226

    PubMed  CAS  Google Scholar 

  • Schulz TF, Calabro ML, Hoad JG et al. (1991) HTLV-1 envelope sequences from Brazil, the Caribbean, and Romania: clustering of sequences according to geographic origin and variability in an antibody epitope. Virology 184:483

    PubMed  CAS  Google Scholar 

  • Schwarz M, Murphy PM (2001) Kaposi’s sarcoma-associated herpesvirus G protein-coupled receptor constitutively activates NF-κ B and induces proinflammatory cytokine and chemokine production via a C-terminal signaling determinant. J Immunol 167:505–513

    PubMed  CAS  Google Scholar 

  • Seiki M, Hattori S, Hirayama Yet al. (1983) Human adult T-cell leukemia virus: complete nucleotide sequence of the provirus genome integrated in leukemia cell DNA. Proc Natl Acad Sci USA 80:3618

    PubMed  CAS  Google Scholar 

  • Seiki M, Inoue J, Takeda T et al. (1986) Direct evidence that p40x of human T-cell leukemia virus type I is a transacting transcriptional activator. EMBO J 5:561

    PubMed  CAS  Google Scholar 

  • Sharp TV, Wang HW, Koumi A et al. (2002) K15 protein of Kaposi’s sarcoma-associated herpesvirus is latently expressed and binds to HAX-1, a protein with antiapoptotic function. J Virol 76:802–816

    PubMed  CAS  Google Scholar 

  • Sheu LF, Chen A, Meng CL et al. (1996) Enhanced malignant progression of nasopharyngeal carcinoma cells mediated by the expression of Epstein-Barr nuclear antigen 1 in vivo. J Pathol 180:243–248

    PubMed  CAS  Google Scholar 

  • Sinclair AJ, Palmero I, Peters G, Farrell PJ (1994) EBNA-2 and EBNA-LP cooperate to cause G0 to G1 transition during immortalization of resting human B lymphocytes by Epstein-Barr virus. EMBO J 13:3321–3328

    PubMed  CAS  Google Scholar 

  • Smith PR, Jesus O de, Turner D et al. (2000) Structure and coding content of CST (BART) family RNAs of Epstein-Barr virus. J Virol 74:3082–3092

    PubMed  CAS  Google Scholar 

  • Soulier J, Grollet L, Oksenhendler E et al. (1995) Kaposi’s sarcoma-associated herpesvirus-like DNA sequences in multicentric Castleman’s disease. Blood 86:1276–1280

    PubMed  CAS  Google Scholar 

  • Staskus KA, Zhong W, Gebhard K et al. (1997) Kaposi’s sarcoma-associated herpesvirus gene expression in endothelial (spindle) tumor cells. J Virol 71:715–719

    PubMed  CAS  Google Scholar 

  • Stehelin D, Varmus HE, Bishop JM et al. (1976) DNA related to the transforming gene(s) of avian sarcoma viruses is present in normal avian DNA. Nature 260:170

    PubMed  CAS  Google Scholar 

  • Strobl LJ, Hofelmayr H, Marschall G, Brielmeier M, Bornkamm GW, Zimber-Strobl U (2000) Activated Notch1 modulates gene expression in B cells similarly to Epstein-Barr viral nuclear antigen 2. J Virol 74:1727–1735

    PubMed  CAS  Google Scholar 

  • Strockbine LD, Cohen JI, Farrah T et al. (1998) The Epstein-Barr virus BARF1 gene encodes a novel, soluble colony-stimulating factor-1 receptor. J Virol 72:4015–4021

    PubMed  CAS  Google Scholar 

  • Struhl G, Adachi A (1998) Nuclear access and action of notch in vivo. Cell 93:649–660

    PubMed  CAS  Google Scholar 

  • Su IJ, Hsieh HC, Lin KH et al. (1991) Aggressive peripheral T-cell lymphomas containing Epstein-Barr viral DNA:a clinicopathologic and molecular analysis. Blood 77:799–808

    PubMed  CAS  Google Scholar 

  • Sugden B, Warren N (1989) A promoter of Epstein-Barr virus that can function during latent infection can be transactivated by EBNA-1, a viral protein required for viral DNA replication during latent infection. J Virol 63:2644–2649

    PubMed  CAS  Google Scholar 

  • Sun R, Lin SF, Gradoville L, Yuan Y, Zhu F, Miller G (1998) A viral gene that activates lytic cycle expression of Kaposi’s sarcoma-associated herpesvirus. Proc Natl Acad Sci USA 95:10.866–10.871

    Google Scholar 

  • Suzuki T, Kitao S, Matsushime H et al. (1996) HTLV-1 Tax protein interacts with cyclin-dependent kinase inhibitor pl6INK4A and counteracts its inhibitory activity towards CDK4. EMBO J 15:1607

    PubMed  CAS  Google Scholar 

  • Suzuki T, Narita T, Uchida-Toita M et al. (1999a) Down-regulation of the INK4 family of cyclin-dependent kinase inhibitors by tax protein of HTLV-1 through two distinct mechanisms. Virology 259:384

    PubMed  CAS  Google Scholar 

  • Suzuki T, Ohsugi Y, Uchida-Toita M et al. (1999b) Tax oncoprotein of HTLV-1 binds to the human homologue of Drosophila discs large tumor suppressor protein, hDLG, and perturbs its function in cell growth control. Oncogene 18:5967

    PubMed  CAS  Google Scholar 

  • Swaminathan S, Tomkinson B, Kieff E (1991) Recombinant Epstein-Barr virus with small RNA (EBER) genes deleted transforms lymphocytes and replicates in vitro. Proc Natl Acad Sci USA 88:1546–1550

    PubMed  CAS  Google Scholar 

  • Swanton C, Mann DJ, Fleckenstein B, Neipel F, Peters G, Jones N (1997) Herpes viral cyclin/Cdk6 complexes evade inhibition by CDK inhibitor proteins. Nature 390:184–187

    PubMed  CAS  Google Scholar 

  • Tanaka A, Takahashi C, Yamaoka S et al. (1990) Oncogenic transformation by the tax gene of human T-cell leukemia virus type I in vitro. Proc Natl Acad Sci USA 87:1071

    PubMed  CAS  Google Scholar 

  • Thomas JA, Hotchin NA, Allday MJ et al. (1990) Immunohistology of Epstein-Barr virus-associated antigens in B cell disorders from immunocompromised individuals. Transplantation 49:944–953

    PubMed  CAS  Google Scholar 

  • Tomkinson B, Robertson E, Kieff E (1993) Epstein-Barr virus nuclear proteins EBNA-3A and EBNA-3C are essential for B-lymphocyte growth transformation. J Virol 67:2014–2025

    PubMed  CAS  Google Scholar 

  • Uchiyama T, Yodoi J, Sagawa K et al. (1977) Adult T-cell leukemia: clinical and hematologic features of 16 cases. Blood 50:481

    PubMed  CAS  Google Scholar 

  • Uittenbogaard MN, Giebler HA, Reisman D et al. (1995) Transcriptional repression of p53 by human T-cell leukemia virus type I Tax protein. J Biol Chem 270:28.503

    Google Scholar 

  • Van Brussel M, Salemi M, Liu HF et al. (1999) The discovery of two new divergent STLVs has implications for the evolution and epidemiology of HTLVs. Rev Med Virol 9:155

    PubMed  Google Scholar 

  • Van der Maaten MJ, Boothe AD, Seger CL (1972) Isolation of a virus from cattle with persistent lymphocytosis. J Natl Cancer Inst 49:1649

    PubMed  Google Scholar 

  • Van Orden K, Giebler HA, Lemasson I et al. (1999) Binding of p53 to the KIX domain of CREB binding protein. A potential link to human T-cell leukemia virus, type I-associated leukemogenesis. J Biol Chem 274:26.321

    Google Scholar 

  • Vieira J, O’Hearn P, Kimball L, Chandran B, Corey L (2001) Activation of Kaposi’s sarcoma-associated herpesvirus (human herpesvirus 8) lytic replication by human cytomegalovirus. J Virol 75:1378–1386

    PubMed  CAS  Google Scholar 

  • Vilchez RA, Madden CR, Kozinetz CA et al. (2002) Association between simian virus 40 and non-Hodgkin lymphoma. Lancet 359:817–823

    PubMed  CAS  Google Scholar 

  • Vockerodt M, Haier B, Buttgereit P, Tesch H, Kube D (2001) The Epstein-Barr virus latent membrane protein 1 induces interleukin-10 in Burkitt’s lymphoma cells but not in Hodgkin’s cells involving the p38/SAPK2 pathway. Virology 280:183–198

    PubMed  CAS  Google Scholar 

  • Wagner S, Green MR (1993) HTLV-I Tax protein stimulation of DNA binding of bZIP proteins by enhancing dimerization. Science 262:395

    PubMed  CAS  Google Scholar 

  • Wang D, Liebowitz D, Kieff E (1985) An EBV membrane protein expressed in immortalized lymphocytes transforms established rodent cells. Cell 43:831–840

    PubMed  CAS  Google Scholar 

  • Wang F, Gregory CD, Rowe M et al. (1987) Epstein-Barr virus nuclear antigen 2 specifically induces expression of the B-cell activation antigen CD23. Proc Natl Acad Sci USA 84:3452–3456

    PubMed  CAS  Google Scholar 

  • Wang F, Gregory C, Sample C et al. (1990) Epstein-Barr virus latent membrane protein (LMP1) and nuclear proteins 2 and 3C are effectors of phenotypic changes in B lymphocytes: EBNA-2 and LMP1 cooperatively induce CD23. J Virol 64:2309–2318

    PubMed  CAS  Google Scholar 

  • Wang HW, Sharp TV, Koumi A, Koentges G, Boshoff C (2002) Characterization of an anti-apoptotic glycoprotein encoded by Kaposi’s sarcoma-associated herpesvirus which resembles a spliced variant of human survivin. EMBO J 21:2602–2615

    PubMed  CAS  Google Scholar 

  • Wattel E, Vartanian JP, Pannetier C et al. (1995) Clonal expansion of human T-cell leukemia virus type I-infected cells in asymptomatic and symptomatic carriers without malignancy. J Virol 69:2863

    PubMed  CAS  Google Scholar 

  • Wei MX, Ooka T (1989) A transforming function of the BARF1 gene encoded by Epstein-Barr virus. EMBO J 8:2897–2903

    PubMed  CAS  Google Scholar 

  • Weiss LM, Movahed LA, Warnke RA, Sklar J (1989) Detection of Epstein-Barr viral genomes in Reed-Sternberg cells of Hodgkin’s disease. N Engl J Med 320:502–506

    PubMed  CAS  Google Scholar 

  • Widmer I, Wernli M, Bachmann F, Gudat F, Cathomas G, Erb P (2002) Differential expression of viral Bcl-2 encoded by Kaposi’s sarcoma-associated herpesvirus and human Bcl-2 in primary effusion lymphoma cells and Kaposi’s sarcoma lesions. J Virol 76:2551–2556

    PubMed  CAS  Google Scholar 

  • Wilson JB, Weinberg W, Johnson R, Yuspa S, Levine AJ (1990) Expression of the BNLF-1 oncogene of Epstein-Barr virus in the skin of transgenic mice induces hyperplasia and aberrant expression of keratin 6. Cell 61:1315–1327

    PubMed  CAS  Google Scholar 

  • Wilson JB, Bell JL, Levine AJ (1996) Expression of Epstein-Bar r virus nuclear antigen-1 induces B cell neoplasia in transgenic mice. EMBO J 15:3117–3126

    PubMed  CAS  Google Scholar 

  • Winberg G, Matskova L, Chen F et al. (2000) Latent membrane protein 2A of Epstein-Barr virus binds WW domain E3 protein-ubiquitin ligases that ubiquitinate B-cell tyrosine kinases. Mol Cell Biol 20:8526–8535

    PubMed  CAS  Google Scholar 

  • Yin MJ, Christerson LB, Yamamoto Y et al. (1998) HTLV-I Tax protein binds to MEKK1 to stimulate IκB kinase activity and NF-κB activation. Cell 93:875

    PubMed  CAS  Google Scholar 

  • Yoshida M, Suzuki T, Fukisawa J et al. (1995) HTLV-1 oncoprotein tax and cellular transcription factors. Curr Top Microbiol Immunol 193:79

    PubMed  CAS  Google Scholar 

  • Young L, Alfieri C, Hennessy K et al. (1989) Expression of Epstein-Barr virus transformation-associated genes in tissues of patients with EBV lymphoproliferative disease. N Engl J Med 321:1080–1085

    PubMed  CAS  Google Scholar 

  • Zimber-Strobl U, Strobl LJ, Meitinger C et al. (1994) Epstein-Barr virus nuclear antigen 2 exerts its transactivating function through interaction with recombination signal binding protein RBP-J κ, the homologue of Drosophila Suppressor of Hairless. EMBO J 13:4973–4982

    PubMed  CAS  Google Scholar 

  • Zimber-Strobl U, Kempkes B, Marschall G et al. (1996) Epstein-Barr virus latent membrane protein (LMP1) is not sufficient to maintain proliferation of B cells but both it and activated CD40 can prolong their survival. EMBO J 15:7070–7078

    PubMed  CAS  Google Scholar 

  • Zimring JC, Goodbourn S, Offermann MK (1998) Human herpesvirus 8 encodes an interferon regulatory factor (IRF) homolog that represses IRF-1-mediated transcription. J Virol 72:701–707

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Brinkmann, M.M., von Neuhoff, N., Tillmann, H.L., Schulz, T.E. (2003). Viren und die Entstehung hämatologischer Neoplasien. In: Ganten, D., Ruckpaul, K., Schlegelberger, B., Fonatsch, C. (eds) Molekularmedizinische Grundlagen von hämatologischen Neoplasien. Molekulare Medizin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59343-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59343-7_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63941-8

  • Online ISBN: 978-3-642-59343-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics