Skip to main content

Part of the book series: Molekulare Medizin ((MOLMED))

Zusammenfassung

Unabhängig voneinander haben Schröder (1964) und German (1965) festgestellt, dass eine erhöhte Rate somatischer Chromosomenveränderungen ein charakteristisches Merkmal zweier autosomal-rezessiver Krankheiten darstellt, der Fanconi-Anämie (FA) bzw. des Bloom-Syndroms (BS). Heute ist dieses „Symptom“namensgebend für eine Gruppe von Erkrankungen, zu denen als wichtigste noch die Ataxia teleangiectatica (AT) und das Nijmegenbreakage-Syndrom (NBS) zählen. Hinzu kommen das Werner- und das Rothmund-Thomson-Syndrom, die so genannte AT-ähnliche Erkrankung (ATLD; Mre11-Defizienz). Als Begleitsymptom wurde eine erhöhte spontane bzw. induzierte Chromosomeninstabilität auch für eine Reihe weiterer Krankheiten beschrieben, wie z.B. die Ligase-I- und -IV-Defizienz sowie die Dyskeratosis congenita. Die Zahl dieser Erkrankungen wird weiter zunehmen, wie bereits aus theoretischen Überlegungen (s. unten) zu folgern ist.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Ababou M, Dutertre S, Lecluse Y et al. (2000) ATM-dependent phosphorylation and accumulation of endogenous BLM protein in response to ionizing radiation. Oncogene 19:5955–5963

    PubMed  CAS  Google Scholar 

  • Alter BP (1996) Fanconi’s anemia and malignancies. Am J Hematol 53:99–110

    PubMed  CAS  Google Scholar 

  • Andegeko, Y, Moyal L, Mittelman L et al. (2001) Nuclear retention of ATM sites of DNA double strand breaks. J Biol Chem 276:38224–38230

    PubMed  CAS  Google Scholar 

  • Antoccia A, Stumm M, Saar K et al. (1999) Impaired p53-mediated DNA damage response, cell-cycle disturbance and chromosome aberrations in Nijmegen breakage syndrome lymphoblastoid cell lines. Int J Radiat Biol 75:583–591

    PubMed  CAS  Google Scholar 

  • Athma P, Rappaport R, Swift M (1996) Molecular genotyping shows that ataxia-telangiectasia heterozygotes are predisposed to breast cancer. Cancer Genet Cytogenet 92:130–134

    PubMed  CAS  Google Scholar 

  • Auerbach AD, Verlander PC (1997) Disorders of DNA replication and repair. Curr Opin Pediatr 9:600–616

    PubMed  CAS  Google Scholar 

  • Bahr A, De Graeve F, Kedinger C, Chatton B (1998) Point mutations causing Bloom’s syndrome abolish ATPase and DNA helicase activities of the BLM protein. Oncogene 17:2565–2571

    PubMed  CAS  Google Scholar 

  • Barnes DE, Tomkinson AE, Lehmann AR, Webster DB, Lindahl T (1992) Mutations in the DNA ligase I gene of an individual with immunodeficiencies and cellular hypersensitivity to DNA-damaging agents. Cell 69:495–503

    PubMed  CAS  Google Scholar 

  • Baxevanis AD, Landsman D (1995) The HMG-I box protein family: classification and functional relationships. Nucleic Acids Res 23:1604–1613

    PubMed  CAS  Google Scholar 

  • Becker-Catania SG, Gatti RA (2001) Ataxia-telangiectasia. Adv Exp Med Biol 495:191–198

    PubMed  CAS  Google Scholar 

  • Bekiesinska-Figatowska M, Chrzanowska KH, Sikorska J et al. (2000) Cranial MRI in the Nijmegen breakage syndrome. Neuroradiology 42:43–47

    PubMed  CAS  Google Scholar 

  • Bender MA, Griggs HG, Walker PL (1973) Mechanisms of chromosomal aberration production: I. Aberration production by ultraviolet light. Mutat Res 20:387–402

    PubMed  CAS  Google Scholar 

  • Bischof O, Kim SH, Irving J et al. (2001) Regulation and localization of the Bloom syndrome protein in response to DNA damage. J Cell Biol 153:367–380

    PubMed  CAS  Google Scholar 

  • Bressan DA, Baxter BK, Petrini JH (1999) The Mre11-Rad50-Xrs2 protein complex facilitates homologous recombination-based double-strand break repair in Saccharomyces cerevisiae. Mol Cell Biol 19:7681–7687

    PubMed  CAS  Google Scholar 

  • Brown KD, Barlow C, Wynshaw-Boris A (1999) Multiple ATM-dependent pathways: an explanation for pleiotropy. Am J Hum Genet 64:46–50

    PubMed  CAS  Google Scholar 

  • Busch DB, Zdzienicka MZ, Natarajan AT et al. (1996) A CHO mutant, UV40, that is sensitive to diverse mutagens and represents a new complementation group of mitomycin C sensitivity. Mutat Res 363:209–221

    PubMed  Google Scholar 

  • Carney JP, Maser RS, Olivares H et al. (1998) The hMRE11/hRad50 protein complex and Nijmegen breakage syndrome: linkage of double-strand break repair to the cellular DNA damage response. Cell 93:477–486

    PubMed  CAS  Google Scholar 

  • Cerosaletti KM, Desai-Mehta A, Yeo TC et al. (2000) Retroviral expression of the NBS1 gene in cultured Nijmegen breakage syndrome cells restores normal radiation sensitivity and nuclear focus formation. Mutagenesis 15:281–286

    PubMed  Google Scholar 

  • Chakraverty RK, Hickson ID (1999) Defending genome integrity during DNA replication: a proposed role for RecQ family helicases. Bioessays 21:286–294

    PubMed  CAS  Google Scholar 

  • Chen J, Birkholtz GG, Lindblom P, Rubio C, Lindblom A (1998) The role of ataxia-telangiectasia heterozygotes in familial breast cancer. Cancer Res 58:1376–1379

    PubMed  CAS  Google Scholar 

  • Chen HT, Bhandoola A, Difilippantonio MJ et al. (2000) Response to RAG-mediated VDJ cleavage by NBS1 and gamma-H2AX. Science 290:1962–1965

    PubMed  CAS  Google Scholar 

  • Chrzanowska KH, Kleijer WJ, Krajewska-Walasek M et al. (1995) Eleven Polish patients with microcephaly, immunodeficiency, and chromosomal instability: the Nijmegen breakage syndrome. Am J Med Genet 57:462–471

    PubMed  CAS  Google Scholar 

  • Collins A, Johnson RT (1987) DNA repair mutants in higher eukaryotes. J Cell Sci Suppl 6:61–82

    PubMed  CAS  Google Scholar 

  • Cornforth MN (1998) Radiation-induced damage and the formation of chromosomal aberrations. In: Nickoloff JA, Hoekstra MF (eds) DNA damage and repair, vol 2, DNA repair in higher eukaryotes. Humana Press, Totowa, NJ, pp 559–585

    Google Scholar 

  • Costanzo V, Robertson K, Bibikova M et al. (2001) Mre11 protein complex prevents double-strand break accumulation during chromosomal DNA replication. Mol Cell 8:137–147

    PubMed  CAS  Google Scholar 

  • D’Amours D, Jackson SP (2002) The Mre11 complex: at the crossroads of DNA repair and checkpoint signalling. Nat Rev Mol Cell Biol 3:317–327

    PubMed  Google Scholar 

  • Dawson JP (1955) Congenital pancytopenia associated with mutliple congenital anomalies (Fanconi type). Pediatrics 15:325–333

    PubMed  CAS  Google Scholar 

  • Demuth I, Wlodarski M, Tipping AJ et al. (2000) Spectrum of mutations in the Fanconi anemia group G gene, FANCG/XRCC9. Eur J Hum Genet 8:861–868

    PubMed  CAS  Google Scholar 

  • Desai-Mehta A, Cerosaletti KM, Concannon P (2001) Distinct functional domains of nibrin mediate Mre11 binding, focus formation, and nuclear localization. Mol Cell Biol 21:2184–2191

    PubMed  CAS  Google Scholar 

  • De Schouwer PJ, Dyer MJ, Brito-Babapulle VB et al. (2000) T-cell prolymphocytic leukaemia: antigen receptor gene rearrangement and a novel mode of MTCP1 B1 activation. Br J Haematol 110:831–838

    PubMed  Google Scholar 

  • Digweed M, Sperling K (1989) Identification of a HeLa mRNA fraction which can correct the DNA-repair defect in Fanconi anaemia fibroblasts. Mutat Res 218:171–177

    PubMed  CAS  Google Scholar 

  • Digweed M, Sperling K (1996) Molecular analysis of Fanconi anaemia. Bioessays 18:579–585

    PubMed  CAS  Google Scholar 

  • Digweed M, Zakrzewski-Lüdcke S, Sperling K (1988) Fanconis anaemia: correlation of genetic complementation group with psoralen/UVA response. Hum Genet 78:51–54

    PubMed  CAS  Google Scholar 

  • Digweed M, Reis A, Sperling K (1999) Nijmegen breakage syndrome: consequences of defective DNA double strand break repair. Bioessays 21:649–656

    PubMed  CAS  Google Scholar 

  • Digweed M, Demuth I, Rothe S et al. (2002a) SV40 large T-antigen disturbs the formation of nuclear DNA-repair foci containing MRE11. Oncogene 21:4873–4878

    PubMed  CAS  Google Scholar 

  • Digweed M, Rothe S, Demuth I et al. (2002b) Attenuation of the formation of DNA-repair foci containing RAD51 in Fanconi anaemia. Carcinogenesis 23:1121–1126

    PubMed  CAS  Google Scholar 

  • Dokal I, Luzzatto L (1994) Dyskeratosis congenita is a chromosomal instability disorder. Leuk Lymphoma 15:1–7

    PubMed  CAS  Google Scholar 

  • Dolganov GM, Maser RS, Novikov A et al. (1996) Human Rad50 is physically associated with human Mre11. Identification of a conserved multiprotein complex implicated in recombinational DNA repair. Mol Cell Biol 16:4832–4841

    PubMed  CAS  Google Scholar 

  • Dong Z, Zhong Q, Chen PL (1999) The Nijmegen breakage syndrome protein is essential for Mre11 phosphorylation upon DNA damage. J Biol Chem 274:19513–19516

    PubMed  CAS  Google Scholar 

  • Ellis NA, Groden J, Ye TZ et al. (1995a) The Bloom’s syndrome gene product is homologous to RecQ helicases. Cell 83:655–666

    PubMed  CAS  Google Scholar 

  • Ellis NA, Lennon DJ, Proytcheva M et al. (1995b) Somatic intragenic recombination within the mutated locus BLM can correct the high sister-chromatid exchange phenotype of Bloom syndrome cells. Am J Hum Genet 57:1019–1027

    PubMed  CAS  Google Scholar 

  • Faivre L, Guardiola P, Lewis C et al. (2000) Association of complementation group and mutation type with clinical outcome in fanconi anemia. European Fanconi Anemia Research Group. Blood 96:4064–4070

    PubMed  CAS  Google Scholar 

  • Fanconi G (1927) Familiäre infantile perniziosaartige Anämie (perniziöses Blutbild und Konstitution). Jahrb Kinderheükd 117:257–280

    Google Scholar 

  • FitzGerald MG, Bean JM, Hegde SR et al. (1997) Heterozygous ATM mutations do not contribute to early onset of breast cancer. Nat Genet 15:307–310

    PubMed  CAS  Google Scholar 

  • Flores-Rozas H, Kolodner RD (2000) Links between replication, recombination and genome instability in eukaryotes. Trends Biochem Sci 25:196–200

    PubMed  CAS  Google Scholar 

  • Furuichi Y (2001) Premature aging and predisposition to cancers caused by mutations in RecQ family helicases. Ann NY Acad Sci 928:121–131

    PubMed  CAS  Google Scholar 

  • Futaki M, Yamashita T, Yagasaki H et al. (2000) The IVS4+4 A to T mutation of the Fanconi anemia gene FANCC is not associated with a severe phenotype in Japanese patients. Blood 95:1493–1498

    PubMed  CAS  Google Scholar 

  • Gangloff S, McDonald JP, Bendixen C, Arthur L, Rothstein R (1994) The yeast type I topoisomerase Top3 interacts with Sgsl, a DNA helicase homolog: a potential eukaryotic reverse gyrase. Mol Cell Biol 14:8391–8398

    PubMed  CAS  Google Scholar 

  • Garcia-Higuera I, Taniguchi T, Ganesan S et al. (2001) Interaction of the Fanconi anemia proteins and BRCA1 in a common pathway. Mol Cell 7:249–262

    PubMed  CAS  Google Scholar 

  • Gatei M, Young D, Cerosaletti KM et al. (2000) ATM-dependent phosphorylation of nibrin in response to radiation exposure. Nat Genet 25:115–119

    PubMed  CAS  Google Scholar 

  • Gatti RA (1998) Ataxia-telangiectasia. In: Vogelstein B, Kinzler KW (eds) The genetic basis of human cancer. McGraw-Hill, New York, pp 275–300

    Google Scholar 

  • Gatti RA (2001) The inherited basis of human radiosensitivity. Acta Oncol 40:702–711

    PubMed  CAS  Google Scholar 

  • Gatti RA, Tward A, Concannon P (1999) Cancer risk in ATM heterozygotes: a model of phenotypic and mechanistic differences between missense and truncating mutations. Mol Genet Metab 68:419–423

    PubMed  CAS  Google Scholar 

  • German J (1997) Bloom’s syndrome. XX. The first 100 cancers. Cancer Genet Cytogenet 93:100–106

    PubMed  CAS  Google Scholar 

  • German J, Passarge E (1989) Bloom’s syndrome. XII. Report from the registry for 1987. Clin Genet 35:57–69

    PubMed  CAS  Google Scholar 

  • German J, Archibald R, Bloom D (1965) Chromosomal breakage in a rare and probably genetically determined syndrome of man. Science 148:506–507

    PubMed  CAS  Google Scholar 

  • German J, Roe AM, Leppert MF, Ellis NA (1994) Bloom syndrome: an analysis of consanguineous families assigns the locus mutated to chromosome band 15q26.1. Proc Natl Acad Sci USA 91:6669–6673

    PubMed  CAS  Google Scholar 

  • Giampietro PF, Verlander PC, Davis JG, Auerbach AD (1997) Diagnosis of Fanconi anemia in patients without congenital malformations: an international Fanconi Anemia Registry Study. Am J Med Genet 68:58–61

    PubMed  CAS  Google Scholar 

  • Gilad S, Khosravi R, Shkedy D et al. (1996) Predominance of null mutations in ataxia-telangiectasia. Hum Mol Genet 5:433–440

    PubMed  CAS  Google Scholar 

  • Gilad S, Chessa L, Khosravi R et al. (1998) Genotype-phenotype relationships in ataxia-telangiectasia (AT) and AT variants. Am J Hum Genet 62:551–562

    PubMed  CAS  Google Scholar 

  • Gillio AP, Verlander PC, Batish SD, Giampietro PF, Auerbach AD (1997) Phenotypic consequences of mutations in the Fanconi anemia FAC gene: an International Fanconi Anemia Registry study. Blood 90:105–110

    PubMed  CAS  Google Scholar 

  • Glanz A, Fraser FC (1982) Spectrum of anomalies in Fanconi anaemia. J Med Genet 19:412–416

    PubMed  CAS  Google Scholar 

  • Green AJ, Yates JR, Taylor AM et al. (1995) Severe microcephaly with normal intellectual development: the Nijmegen breakage syndrome. Arch Dis Child 73:431–434

    PubMed  CAS  Google Scholar 

  • Gruenert DC, Cleaver JE (1985) Repair of psoralen-induced cross-links and monoadducts in normal and repair-deficient human fibroblasts. Cancer Res 45:5399–5404

    PubMed  CAS  Google Scholar 

  • Haber JE (2000) Partners and pathways — repairing a double-strand break. Trends Genet 16:259–264

    PubMed  CAS  Google Scholar 

  • Heim RA, Lench NJ, Swift M (1992) Heterozygous manifestations in four autosomal recessive human cancer-prone syndromes: ataxia telangiectasia, xeroderma pigmentosum, Fanconi anemia, and Bloom syndrome. Mutat Res 284:25–36

    PubMed  CAS  Google Scholar 

  • Heiss NS, Knight SW, Vulliamy TJ et al. (1998) X-linked dyskeratosis congenita is caused by mutations in a highly conserved gene with putative nucleolar functions. Nat Genet 19:32–38

    PubMed  CAS  Google Scholar 

  • Hejna JA, Timmers CD, Reifsteck C et al. (2000) Localization of the Fanconi anemia complementation group D gene to a 200-kb region on chromosome 3p25.3. Am J Hum Genet 66:1540–1551

    PubMed  CAS  Google Scholar 

  • Hopfner KP, Putnam CD, Tainer JA (2002) DNA doublestrand break repair from head to tail. Curr Opin Struct Biol 12:115–122

    PubMed  CAS  Google Scholar 

  • Howlett NG, Taniguchi T, Olson S et al. (2002) Biallelic inactivation of BRCA2 in Fanconi anemia. Science 297:606–609

    PubMed  CAS  Google Scholar 

  • Ito A, Tauchi H, Kobayashi J et al. (1999) Expression of fulllength NBS1 protein restores normal radiation responses in cells from Nijmegen breakage syndrome patients. Biochem Biophys Res Commun 265:716–721

    PubMed  CAS  Google Scholar 

  • Jackson SP (2002) Sensing and repairing DNA double-strand breaks. Carcinogenesis 23:687–696

    PubMed  CAS  Google Scholar 

  • Jeggo PA, Carr AM, Lehmann AR (1998) Splitting the ATM: distinct repair und checkpoint defects in ataxia-telangiectasia. Trends Genet 14:312–316

    PubMed  CAS  Google Scholar 

  • Joenje H, Patel KJ (2001) The emerging genetic and molecular basis of Fanconi anaemia. Nature 2:446–457

    CAS  Google Scholar 

  • Joenje H, Oostra AB, Wijker M et al. (1997) Evidence for at least eight Fanconi anemia genes. Am J Hum Genet 61:940–944

    PubMed  CAS  Google Scholar 

  • Joenje H, Levitus M, Waisfisz Q et al. (2000) Complementation analysis in Fanconi anemia: assignment of the reference FA-H patient to group A. Am J Hum Genet 67:759–762

    PubMed  CAS  Google Scholar 

  • Johnson RT, Gotoh E, Mullinger AM et al. (1999) Targeting double-strand breaks to replicating DNA identifies a subpathway of DSB repair that is defective in ataxia-telangiectasia cells. Biochem Biophys Res Commun 261:317–325

    PubMed  CAS  Google Scholar 

  • Jongmans W, Vuillaume M, Chrzanowska K et al. (1997) Nijmegen breakage syndrome cells fail to induce the p53-mediated DNA damage response following exposure to ionizing radiation. Mol Cell Biol 17:5016–5022

    PubMed  CAS  Google Scholar 

  • Karow JK, Chakraverty RK, Hickson ID (1997) The Bloom’s syndrome gene product is a 3′-5′ DNA helicase. J Biol Chem 272:30611–30614

    PubMed  CAS  Google Scholar 

  • Karow JK, Constantinou A, Li JL, West SC, Hickson ID (2000a) The Bloom’s syndrome gene product promotes branch migration of holliday junctions. Proc Natl Acad Sci USA 97:6504–6508

    PubMed  CAS  Google Scholar 

  • Karow JK, Wu L, Hickson ID (2000b) RecQ family helicases: roles in cancer and aging. Curr Opin Genet Dev 10:32–38

    PubMed  CAS  Google Scholar 

  • Karran P (2000) DNA double strand break repair in mammalian cells. Curr Opin Genet Dev 10:144–150

    PubMed  CAS  Google Scholar 

  • Kastan MB, Zhan Q, Deiry WS el et al. (1992) A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell 71:587–597

    PubMed  CAS  Google Scholar 

  • Khanna KK, Jackson SP (2001) DNA double-strand breaks: signaling, repair and the cancer connection. Nat Genet 27:247–254

    PubMed  CAS  Google Scholar 

  • Khanna KK, Gatti R, Concannon P et al. (1998) Cellular responses to DNA damage and human chromosome instability syndromes. In: Nickoloff JA, Hoekstra MF (eds) DNA damage and repair, vol 2, DNA repair in higher eukaryotes. Humana Press, Totowa, NJ, pp 395–442

    Google Scholar 

  • Khanna KK, Lavin MF, Jackson SP, Mulhern TD (2001) ATM, a central controller of cellular responses to DNA damage. Cell Death Differ 8:1052–1065

    PubMed  CAS  Google Scholar 

  • Kitao S, Ohsugi I, Ichikawa K et al. (1998) Cloning of two new human helicase genes of the RecQ family: biological significance of multiple species in higher eukaryotes. Genomics 54:443–452

    PubMed  CAS  Google Scholar 

  • Kitao S, Shimamoto A, Goto M et al. (1999) Mutations in RECQL4 cause a subset of cases of Rothmund-Thomson syndrome. Nat Genet 22:82–84

    PubMed  CAS  Google Scholar 

  • Klocker H, Burtscher HJ, Auer B, Hirsch-Kaufmann M, Schweiger M (1985) Fibroblasts from patients with Fanconis anemia are not deficient in excision of thymine dimer. Eur J Cell Biol 37:240–242

    PubMed  CAS  Google Scholar 

  • Kruyt FA, Hoshino T, Liu JM et al. (1998) Abnormal microsomal detoxification implicated in Fanconi anemia group C by interaction of the FAC protein with NADPH cytochrome P450 reductase. Blood 92:3050–3056

    PubMed  CAS  Google Scholar 

  • Kuang Y, Garcia-Higuera I, Moran A et al. (2000) Carboxy terminal region of the Fanconi anemia protein, FANCG/XRCC9, is required for functional activity. Blood 96:1625–1632

    PubMed  CAS  Google Scholar 

  • Kupfer GM, Naf D, Suliman A, Pulsipher M, D’Andrea AD (1997a) The Fanconi anaemia proteins, FAA and FAC, interact to form a nuclear complex. Nat Genet 17:487–490

    PubMed  CAS  Google Scholar 

  • Kupfer GM, Yamashita T, Naf D et al. (1997b) The Fanconi anemia polypeptide, FAC, binds to the cyclin-dependent kinase, cdc2. Blood 90:1047–1054

    PubMed  CAS  Google Scholar 

  • Kusano K, Berres ME, Engels WR (1999) Evolution of the RECQ familiy of helicases: a Drosophila homolog, Dmblm, is similar to the human bloom syndrome gene. Genetics 151:1027–1039

    PubMed  CAS  Google Scholar 

  • Langlois RG, Bigbee WL, Jensen RH, German J (1989) Evidence for increased in vivo mutation and somatic recombination in Bloom’s syndrome. Proc Natl Acad Sci USA 86:670–674

    PubMed  CAS  Google Scholar 

  • Larson GP, Zhang G, Ding S et al. (1997–98) An allelic variant at the ATM locus is implicated in breast cancer susceptibility. Genet Test 1:165–170

    PubMed  CAS  Google Scholar 

  • Lavin MF (1999) ATM: the product of the gene mutated in ataxia-telangiectasia. Int J Biochem Cell Biol 31:735–740

    PubMed  CAS  Google Scholar 

  • Lebel M, Leder P (1998) A deletion within the murine Werner syndrome helicase induces sensitivity to inhibitors of topoisomerase and loss of cellular proliferative capacity. Proc Natl Acad Sci USA 95:13097–13102

    PubMed  CAS  Google Scholar 

  • Levran O, Doggett NA, Auerbach AD (1998) Identification of Alu-mediated deletions in the Fanconi anemia gene FAA. Hum Mutat 12:145–152

    PubMed  CAS  Google Scholar 

  • Lim DS, Kim ST, Xu B et al. (2000) ATM phosphorylates p95/nbs1 in an S-phase checkpoint pathway. Nature 404:613–617

    PubMed  CAS  Google Scholar 

  • Limoli CL, Giedzinski E, Morgan WF, Cleaver JE (2000) Polymerase eta deficiency in the xeroderma pigmentosum variant uncovers an overlap between the S phase checkpoint and double-strand break repair. Proc Natl Acad Sci USA 97:7939–7946

    PubMed  CAS  Google Scholar 

  • Lindor NM, Furuichi Y, Kitao S et al. (2000) Rothmund-Thomson Syndrome due to RECQ4 helicase mutations: report and clinical and molecular comparisons with Bloom syndrome and Werner syndrome. Am J Med Genet 90:223–228

    PubMed  CAS  Google Scholar 

  • Loeb LA (1991) Mutator phenotype may be required for multistage carcinogenesis. Cancer Res 51:3075–3079

    PubMed  CAS  Google Scholar 

  • Lo Ten Foe JR, Rooimans MA, Bosnoyan-Collins L et al. (1996) Expression cloning of a cDNA for the major Fanconi anaemia gene, FAA. Nat Genet 14:320–323

    Google Scholar 

  • Lombard DB, Guarente L (2000) Nijmegen breakage syndrome disease protein and MRE11 at PML nuclear bodies and meiotic telomeres. Cancer Res 60:2331–2334

    PubMed  CAS  Google Scholar 

  • Luo G, Yao MS, Bender CF et al. (1999) Disruption of mRad50 causes embryonic stem cell lethality, abnormal embryonic development, and sensitivity to ionizing radiation. Proc Natl Acad Sci USA 96:7376–7381

    PubMed  CAS  Google Scholar 

  • Luo G, Santoro IM, McDaniel LD et al. (2000) Cancer predisposition caused by elevated mitotic recombination in Bloom mice. Nat Genet 26:424–429

    PubMed  CAS  Google Scholar 

  • Marciniak RA, Johnson FB, Guarente L (2000) Dyskeratosis congenita, telomeres and human ageing. Trends Genet 16:193–195

    PubMed  CAS  Google Scholar 

  • Maser RS, Monsen KJ, Nelms BE, Petrini JH (1997) hMre11 and hRad50 nuclear foci are induced during the normal cellular response to DNA double-strand breaks. Mol Cell Biol 17:6087–6096

    PubMed  CAS  Google Scholar 

  • Maser RS, Zinkel R, Petrini JH (2001) An alternative mode of translation permits production of a variant NBS1 protein from the common Nijmegen breakage syndrome allele. Nat Genet 27:417–421

    PubMed  CAS  Google Scholar 

  • Matsuura S, Weemaes C, Smeets D et al. (1997) Genetic mapping using microcell-mediated chromosome transfer suggests a locus for Nijmegen breakage syndrome at chromosome 8q21–24. Am J Hum Genet 60:1487–1494

    PubMed  CAS  Google Scholar 

  • Matsuura S, Tauchi H, Nakamura A et al. (1998) Positional cloning of the gene for Nijmegen breakage syndrome. Nat Genet 19:179–181

    PubMed  CAS  Google Scholar 

  • McMahon LW, Walsh CE, Lambert MW (1999) Human alpha spectrin II and the Fanconi anemia proteins FANCA and FANCC interact to form a nuclear complex. J Biol Chem 274:32904–32908

    PubMed  CAS  Google Scholar 

  • Medhurst AL, Huber PA, Waisfisz Q, Winter JP de, Mathew CG (2001) Direct interactions of the five known Fanconi anemia proteins suggest a common functional pathway. Hum Mol Genet 10:423–429

    PubMed  CAS  Google Scholar 

  • Meyn MS (1997) Chromosome instability syndromes: lessons for carcinogenesis. Curr Top Microbiol Immunol 221:71–148

    PubMed  CAS  Google Scholar 

  • Meyn MS (1999) Ataxia-telangiectasia, cancer and the pathobiology of the ATM gene. Clin Genet 55:289–304

    PubMed  CAS  Google Scholar 

  • Mirzoeva OK, Petrini JH (2001) DNA damage-dependent nuclear dynamics of the Mre11 complex. Mol Cell Biol 21:281–288

    PubMed  CAS  Google Scholar 

  • Mitchell JR, Wood E, Collins K (1999) A telomerase component is defective in the human disease dyskeratosis congenita. Nature 402:551–555

    PubMed  CAS  Google Scholar 

  • Moens PB, Freire R, Tarsounas M, Spyropoulos B, Jackson SP (2000) Expression and nuclear localization of BLM, a chromosome stability protein mutated in Bloom’s syndrome, suggest a role in recombination during meiotic prophase. J Cell Sci 113:663–672

    PubMed  CAS  Google Scholar 

  • Morgan NV, Tipping AJ, Joenje H, Mathew CG (1999) High frequency of large intragenic deletions in the Fanconi anemia group A gene. Am J Hum Genet 65:1330–1341

    PubMed  CAS  Google Scholar 

  • Moshous D, Callebaut I, Chasseval R de et al. (2001) Artemis, a novel DNA double-strand break repair/V(D)J recombination protein, is mutated in human severe combined immune deficiency. Cell 105:177–186

    PubMed  CAS  Google Scholar 

  • Myung K, Datta A, Chen C, Kolodner RD (2001) SGS1, the Saccharomyces cerevisiae homologue of BLM and WRN, suppresses genome instability and homeologous recombination. Nat Genet 27:113–116

    PubMed  CAS  Google Scholar 

  • Näf D, Kupfer GM, Suliman A, Lambert K, D’Andrea AD (1998) Functional activity of the fanconi anemia protein FAA requires FAC binding and nuclear localization. Mol Cell Biol 18:5952–5960

    PubMed  Google Scholar 

  • Natarajan AT, Obe G (1978) Molecular mechanisms involved in the production of chromosomal aberrations. I. Utilization of Neurospora endonuclease for the study of aberration production in G2 stage of the cell cycle. Mutat Res 69:137–149

    Google Scholar 

  • Natarajan AT, Obe G (1984) Molecular mechanisms involved in the production of chromosomal aberrations: III. Restriction endonucleases. Chromosoma 90:120–127

    PubMed  CAS  Google Scholar 

  • Nelms BE, Maser RS, MacKay JF, Lagally MG, Petrini JH (1998) In situ visualization of DNA double-strand break repair in human fibroblasts. Science 280:590–592

    PubMed  CAS  Google Scholar 

  • O’Driscoll M, Cerosaletti KM, Girard PM et al. (2001) DNA ligase IV mutations identified in patients exhibiting developmental delay and immunodeficiency. Mol Cell 8:1175–1185

    PubMed  Google Scholar 

  • Otsuki T, Kajigaya S, Ozawa K, Liu JM (1999) SNX5, a new member of the sorting nexin family, binds to the Fanconi anemia complementation group A protein. Biochem Biophys Res Commun 265:630–635

    PubMed  CAS  Google Scholar 

  • Pandita TK, Hittelman WN (1992) The contribution of DNA and chromosome repair deficiencies to the radiosensitivity of ataxia-telangiectasia. Radiat Res 131:214–223

    PubMed  CAS  Google Scholar 

  • Pang Q, Keeble W, Christianson TA, Faulkner GR, Bagby GC (2001) FANCC interacts with Hsp70 to protect hematopoietic cells from IFN-gamma/TNF-alpha-mediated cytotoxicity. EMBO J 20:4478–4489

    PubMed  CAS  Google Scholar 

  • Pastink A, Eeken JCJ, Lohmann HM (2001) Genomic integrity and the repair of double-strand DNA breaks. Mutat Res 480–481:37–50

    PubMed  Google Scholar 

  • Pauli TT, Geliert M (1998) The 3′ to 5′ exonuclease activity of Mre 11 facilitates repair of DNA double-strand breaks. Mol Cell 1:969–979

    Google Scholar 

  • Petersen S, Casellas R, Reina-San-Martin B et al. (2001) AID is required to initiate Nbs1/gamma-H2AX focus formation and mutations at sites of class switching. Nature 414:660–665

    PubMed  CAS  Google Scholar 

  • Petrini JH, Donovan JW, Dimare C, Weaver DT (1994) Normal V(D)J coding junction formation in DNA ligase I deficiency syndromes. J Immunol 152:176–183

    PubMed  CAS  Google Scholar 

  • Petrini JH, Walsh ME, DiMare C et al. (1995) Isolation and characterization of the human MRE 11 homologue. Genomics 29:80–86

    PubMed  CAS  Google Scholar 

  • Pitts SA, Kullar HS, Stankovic T et al. (2001) hMRE11: genomic structure and a null mutation identified in a transcript protected from nonsense-mediated mRNA decay. Hum Mol Genet 10:1155–1162

    PubMed  CAS  Google Scholar 

  • Prigent C, Satoh MS, Daly G, Barnes DE, Lindahl T (1994) Aberrant DNA repair and DNA replication due to an inherited enzymatic defect in human DNA ligase I. Mol Cell Biol 14:310–317

    PubMed  CAS  Google Scholar 

  • Pronk JC, Gibson RA, Savoia A et al. (1995) Localisation of the Fanconi anemia complementation group A gene to chromosome 16q24.3. Nat Genet 11:338–340

    PubMed  CAS  Google Scholar 

  • Qiao F, Moss A, Kupfer G M (2001) Fanconi anemia proteins localize to chromatin and the nuclear matrix in a DNA damage and cell cycle-regulated manner. J Biol Chem 276:23391–23396

    PubMed  CAS  Google Scholar 

  • Rattray AJ, Symington LS (1995) Multiple pathways for homologous recombination in Saccharomyces cerevisiae. Genetics 139:45–56

    PubMed  CAS  Google Scholar 

  • Reveil SH (1959) The accurate estimate of chromatid breakage and its relevance to a new interpretation of chromatid aberrations induced by ionizing radiations. Proc R Soc Lond B Biol Sci 150:563–589

    Google Scholar 

  • Riballo E, Critchlow SE, Teo SH et al. (1999) Identification of a defect in DNA ligase IV in a radiosensitive leukaemia patient. Curr Biol 9:699–702

    PubMed  CAS  Google Scholar 

  • Roa BB, Savino CV, Richards CS (1999) Ashkenazi Jewish population frequency of the Bloom syndrome gene 2281 delta 6ins7 mutation. Genet Test 3:219–221

    PubMed  CAS  Google Scholar 

  • Rotman G, Shiloh Y (1998) ATM: from gene to function. Hum Mol Genet 7:1555–1563

    PubMed  CAS  Google Scholar 

  • Saar K, Chrzanowska KH, Stumm M et al. (1997) The gene for the ataxia-telangiectasia variant, Nijmegen breakage syndrome, maps to a 1-cM interval on chromosome 8q21. Am J Hum Genet 60:605–610

    PubMed  CAS  Google Scholar 

  • Saar K, Schindler D, Wegner R-D et al. (1998) Localisation of a Fanconi anemia gene to chromosome 9p. Eur J Hum Genet 6:501–508

    PubMed  CAS  Google Scholar 

  • Sachs RK, Hlatky LR, Trask BJ (2000) Radiation-produced chromosome aberrations — colorful clues. Trends Genet 16:143–146

    PubMed  CAS  Google Scholar 

  • Sandoval N, Platzer M, Rosenthal A et al. (1999) Characterization of ATM gene mutations in 66 ataxia telangiectasia families. Hum Mol Genet 8:69–79

    PubMed  CAS  Google Scholar 

  • Sanz MM, Proytcheva M, Ellis NA, Holloman WK, German J (2000) BLM, the Bloom’s syndrome protein, varies during the cell cycle in its amount, distribution, and co-localization with other nuclear proteins. Cytogenet Cell Genet 91:217–223

    PubMed  CAS  Google Scholar 

  • Sasaki MS, Tonomura A (1973) A high susceptiblity of Fancorn’s anemia to chromosome breakage by DNA cross linking agents. Cancer Res 33:1829–1836

    PubMed  CAS  Google Scholar 

  • Savitsky K, Bar-Shira A, Gilad S et al. (1995) A single ataxia-telangiectasia gene with a product similar to P1-3 kinase. Science 268:1749–1753

    PubMed  CAS  Google Scholar 

  • Sax K (1940) An analysis of X-ray-induced chromosomal aberrations in Tradescantia. Genetics 25:42–68

    Google Scholar 

  • Schindler D, Hoehn H (1988) Fanconi anemia mutation causes cellular susceptibility to ambient oxygen. Am J Hum Genet 43:429–435

    PubMed  CAS  Google Scholar 

  • Schroeder TM (1966) Cytogenetischer Befund und Ätiologie bei Fanconi-Anämie. Ein Fall von Fanconi-Anämie ohne Hexokinasedefekt. Humangenetik 3:76–81

    PubMed  CAS  Google Scholar 

  • Schroeder TM, German J (1974) Bloom’s syndrome and Fancorn’s anemia: demonstration of two distinct patterns of chromosome disruption and rearrangement. Humangenetik 25:299–306

    PubMed  CAS  Google Scholar 

  • Schroeder TM, Anschütz F, Knopp A (1964) Spontane Chromosomenaberrationen bei familiärer Panmyelopathie. Humangenetik 1:194–196

    PubMed  CAS  Google Scholar 

  • Seemanova E (1990) An increased risk for malignant neoplasms in heterozygotes for a syndrome of microcephaly, normal intelligence, growth retardation, remarkable facies, immunodeficiency and chromosomal instability. Mutat Res 238:321–324

    PubMed  CAS  Google Scholar 

  • Seemanova E, Passarge E, Beneskova D et al. (1985) Familial microcephaly with normal intelligence, immunodeficiency, and risk for lymphoreticular malignancies: a new autosomal recessive disorder. Am J Med Genet 20:639–648

    PubMed  CAS  Google Scholar 

  • Seidemann K, Henze G, Beck JD et al. (2000) Non-Hodgkin’s lymphoma in pediatric patients with chromosomal breakage syndromes (AT and NBS). Experience from the BFM trials. Ann Oncol 11:141–1451

    PubMed  Google Scholar 

  • Seyschab H, Sun Y, Friedl R, Schindler D, Hoehn H (1993) G2 phase cell cycle disturbance as a manifestation of genetic cell damage. Hum Genet 92:61–68

    PubMed  CAS  Google Scholar 

  • Shen J-C, Loeb LA (2000) The Werner syndrome gene — the molecular basis of RecQ helicase-deficiency diseases. Trends Genet 16:213–220

    PubMed  CAS  Google Scholar 

  • Shiloh Y, Kastan MB (2001) ATM: genome stability, neuronal development, and cancer cross paths. Adv Cancer Res 83:209–254

    PubMed  CAS  Google Scholar 

  • Sperling K, Neitzel H (2000) Chromosomopathien. In: Ganten D, Ruckpaul K (Hrsg) Monogen bedingte Erbkrankheiten 2. Handbuch der Molekularen Medizin, Bd 7. Springer, Berlin Heidelberg New York, S 43–77

    Google Scholar 

  • Stankovic T, Kidd AM, Sutcliffe A et al. (1998) ATM mutations and phenotypes in ataxia-telangiectasia families in the British Isles: expression of mutant ATM and the risk of leukemia, lymphoma, and breast cancer. Am J Hum Genet 62:334–345

    PubMed  CAS  Google Scholar 

  • Stankovic T, Weber P, Stewart G et al. (1999) Inactivation of ataxia telangiectasia mutated gene in B-cell chronic lymphocytic leukaemia. Lancet 353:26–29

    PubMed  CAS  Google Scholar 

  • Stewart GS, Maser RS, Stankovic T et al. (1999) The DNA double-strand break repair gene hMRE11 is mutated in individuals with an ataxia-telangiectasia-like disorder. Cell 99:577–587

    PubMed  CAS  Google Scholar 

  • Stilgenbauer S, Schaffner C, Litterst A et al. (1997) Biallelic mutations in the ATM gene in T-prolymphocytic leukemia. Nat Med 3:1155–1159

    PubMed  CAS  Google Scholar 

  • Strathdee CA, Duncan AM, Buchwald M (1992a) Evidence for at least four Fanconi anaemia genes including FACC on chromosome 9. Nat Genet 1:196–198

    PubMed  CAS  Google Scholar 

  • Strathdee CA, Gavish H, Shannon WR, Buchwald M (1992b) Cloning of cDNAs for Fanconi’s anaemia by functional complementation. Nature 356:763–767

    PubMed  CAS  Google Scholar 

  • Stumm M, Gatti RA, Reis A et al. (1995) The ataxia telangiectasia-variant genes 1 and 2 are distinct from the ataxia telangiectasia gene on chromosome 11q23.1. Am J Hum Genet 57:960–962

    PubMed  CAS  Google Scholar 

  • Stumm M, Sperling K, Wegner RD (1997) Non-complementation of radiation induced chromosome aberrations in Ataxia-telangiectasia/Ataxia-telangiectasia-variant heterodikaryons. Am J Hum Genet 60:1246–1251

    PubMed  CAS  Google Scholar 

  • Swift M (1971) Fanconi’s anaemia in the genetics of neoplasia. Nature 230:370–373

    PubMed  CAS  Google Scholar 

  • Swift M, Caldwell RJ, Chase C (1980) Reassessment of cancer predisposition of Fanconi anemia heterozygotes. J Natl Cancer Inst 65:863–867

    PubMed  CAS  Google Scholar 

  • Swift M, Reitnauer PJ, Morrell D, Chase CL (1987) Breast and other cancers in families with ataxia-telangiectasia. N Engl J Med 316:1289–1294

    PubMed  CAS  Google Scholar 

  • Swift M, Kupper LL, Chase CL (1990) Effective testing of gene-disease associations. Am J Hum Genet 47:266–274

    PubMed  CAS  Google Scholar 

  • Swift M, Morrell D, Massey RB, Chase CL (1991) Incidence of cancer in 161 families affected by ataxia-telangiectasia. N Engl J Med 325:1831–1836

    PubMed  CAS  Google Scholar 

  • Taniguchi T, Garcia-Higuera I, Xu B et al. (2002) Convergence of the fanconi anemia and ataxia telangiectasia signaling pathways. Cell 109:459–472

    PubMed  CAS  Google Scholar 

  • Tauchi H (2000) Positional cloning and functional analysis of the gene responsible for Nijmegen breakage syndrome, NBS1. J Radiat Res 41:9–17

    PubMed  CAS  Google Scholar 

  • Tauchi H, Kobayashi J, Morishima K et al. (2001) The forkhead-associated domain of NBS1 is essential for nuclear foci formation after irradiation but not essential for hRAD50-hMRE11-Nbs1 complex DNA repair activity. J Biol Chem 276:12–15

    PubMed  CAS  Google Scholar 

  • The Fanconi anaemia/Breast cancer consortium (1996) Positional cloning of the Fanconi anaemia group A gene. Nat Genet 14:324–328

    Google Scholar 

  • The International Nijmegen Breakage Syndrome Study Group (2000) Nijmegen breakage syndrome. Arch Dis Child 82:400–406

    Google Scholar 

  • Timmers C, Taniguchi T, Hejna J et al. (2001) Positional cloning of a novel Fanconi anemia gene, FANCD2. Mol Cell 7:241–248

    PubMed  CAS  Google Scholar 

  • Tipping AJ, Pearson T, Morgan NV et al. (2001) Molecular and genealogical evidence for a founder effect in Fanconi anemia families of the Afrikaner population of South Africa. Proc Natl Acad Sci USA 98:5734–5739

    PubMed  CAS  Google Scholar 

  • Tomlinson I, Bodmer W (1999) Selection, the mutation rate and cancer: ensuring that the tail does not wag the dog. Nat Med 5:11–12

    PubMed  CAS  Google Scholar 

  • Trujillo KM, Yuan SS, Lee EY, Sung P (1998) Nuclease activities in a complex of human recombination and DNA repair factors Rad50, Mre11, and p95. J Biol Chem 273:21447–21450

    PubMed  CAS  Google Scholar 

  • Van de Kaa CA, Weemaes CM, Wesseling P et al. (1994) Postmortem findings in the Nijmegen breakage syndrome. Pediatr Pathol 14:787–796

    PubMed  Google Scholar 

  • Van Gent DC, Hoeijmakers JHJ, Kanaar R (2001) Chromosomal stability and the DNA double-stranded break connection. Nature 2:196–206

    Google Scholar 

  • Van Gorp J, Doornewaard H, Verdonck LF et al. (1994) Posttransplant T-cell lymphoma. Report of three cases and a review of the literature. Cancer 73:3064–3072

    PubMed  Google Scholar 

  • Varon R, Vissinga C, Platzer M et al. (1998) Nibrin, a novel DNA double-strand break repair protein, is mutated in Nijmegen breakage syndrome. Cell 93:467–476

    PubMed  CAS  Google Scholar 

  • Varon R, Seemanova E, K Chrzanowska et al. (2000) Clinical ascertainment of Nijmegen breakage syndrome (NBS) and prevalence of the major mutation, 657del5, in three Slav populations. Eur J Hum Genet 8:900–902

    PubMed  CAS  Google Scholar 

  • Varon R, Reis A, Henze G et al. (2001) Mutations in the Nijmegen Breakage syndrome gene (NBS1) in childhood acute lymphoblastic leukemia (ALL). Cancer Res 61:3570–3572

    PubMed  CAS  Google Scholar 

  • Vorechovsky I, Luo L, Dyer MJ et al. (1997) Clustering of missense mutations in the ataxia-telangiectasia gene in a sporadic T-cell leukaemia. Nat Genet 17:96–99

    PubMed  CAS  Google Scholar 

  • Waisfisz Q, Saar K, Morgan NV et al. (1999) The Fanconi anemia group E gene, FANCE, maps to chromosome 6p. Am J Hum Genet 64:1400–1405

    PubMed  CAS  Google Scholar 

  • Walpita D, Plug AW, Neff NF, German J, Ashley T (1999) Bloom’s syndrome protein, BLM, colocalizes with replication protein A in meiotic prophase nuclei of mammalian spermatocytes. Proc Natl Acad Sci USA 96:5622–5627

    PubMed  CAS  Google Scholar 

  • Wang Y, Cortez D, Yazdi P et al. (2000) BASC, a super complex of BRCA1-associated proteins involved in the recognition and repair of aberrant DNA structures. Genes Dev 14:927–939

    PubMed  CAS  Google Scholar 

  • Warren ST, Schultz RA, Chang CC, Wade MH, Trosko JE (1981) Elevated spontaneous mutation rate in Bloom syndrome fibroblasts. Proc Natl Acad Sci USA 78:3133–3137

    PubMed  CAS  Google Scholar 

  • Weemaes CM, Smeets DF, Burgt CJ van der (1994) Nijmegen Breakage syndrome. A progress report. Int J Radiat Biol 66:S185–188

    PubMed  CAS  Google Scholar 

  • Wegner RD, Chrzanowska KH, Sperling K, Stumm M (1998) Ataxia-telangiectasia variants. In: Ochs HD, Smith CIE, Puck JM (eds) Primary immunodeficiency diseases: a molecular and genetic approach. Oxford University Press, Oxford, UK, pp 324–334

    Google Scholar 

  • Welcsh PL, Schubert EL, King MC (1998) Inherited breast cancer: an emerging picture. Clin Genet 54:447–458

    PubMed  CAS  Google Scholar 

  • Whitney MA, Saito H, Jakobs PM et al. (1993) A common mutation in the FACC gene causes Fanconi anaemia in Ashkenazi Jews. Nat Genet 4:202–205

    PubMed  CAS  Google Scholar 

  • Winter JP de, Waisfisz Q, Rooimans MA et al. (1998) The Fanconi anaemia group G gene FANCG is identical with XRCC9. Nat Genet 20:281–283

    PubMed  Google Scholar 

  • Winter JP de, Leveille F, Van Berkel CG et al. (2000a) Isolation of a cDNA representing the Fanconi anemia complementation group E gene. Am J Hum Genet 67:1306–1308

    PubMed  Google Scholar 

  • Winter JP de, Rooimans MA, Van der Weel L et al. (2000b) The Fanconi anaemia gene FANCF encodes a novel protein with homology to ROM. Nat Genet 24:15–16

    PubMed  Google Scholar 

  • Winter JP de, Van der Weel L, Groot J de et al. (2000c) The Fanconi anemia protein FANCF forms a nuclear complex with FANCA, FANCC and FANCG. Hum Mol Genet 9:2665–2674

    PubMed  Google Scholar 

  • Wu X, Ranganathan V, Weisman DS et al. (2000) ATM phosphorylation of Nijmegen breakage syndrome protein is required in a DNA damage response. Nature 405:477–482

    PubMed  CAS  Google Scholar 

  • Xie Y, de Winter JP, Waisfisz Q et al. (2000) Aberrant Fanconi anaemia protein profiles in acute myeloid leukaemia cells. Br J Haematol 111:1057–1064

    PubMed  CAS  Google Scholar 

  • Yamaguchi-Iwai Y, Sonoda E, Sasaki MS et al. (1999) Mre11 is essential for the maintenance of chromosomal DNA in vertebrate cells. EMBO J 18:6619–6629

    PubMed  CAS  Google Scholar 

  • Yu C-E, Oshima J, Fu Y-H et al. (1996) Positional cloning of the Werner’s syndrome gene. Science 272:258–262

    PubMed  CAS  Google Scholar 

  • Zakrzewski S, Sperling K (1980) Genetic heterogeneity of Fanconi’s anaemia demonstrated by somatic cell-hybrids. Hum Genet 56:81–84

    PubMed  CAS  Google Scholar 

  • Zdzienicka MZ (1996) Mammalian X ray sensitive mutants: a tool for the elucidation of the cellular response to ionizing radiation. Cancer Surv 28:281–291

    PubMed  CAS  Google Scholar 

  • Zhao S, Weng YC, Yuan S-SF et al. (2000) Functional link between ataxia-telangiectasia and Nijmegen breakage syndrome gene products. Nature 405:473–477

    PubMed  CAS  Google Scholar 

  • Zhou B-BS, Elledge SJ (2000) The DNA damage response: putting checkpoints in perspective. Nature 408:433–439

    PubMed  CAS  Google Scholar 

  • Zhu J, Petersen S, Tessarollo L, Nussenzweig A (2001) Targeted disruption of the Nijmegen breakage syndrome gene NBS1 leads to early embryonic lethality in mice. Curr Biol 11:105–109

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Digweed, M., Sperling, K. (2003). Chromosomeninstabilitätssyndrome. In: Ganten, D., Ruckpaul, K., Schlegelberger, B., Fonatsch, C. (eds) Molekularmedizinische Grundlagen von hämatologischen Neoplasien. Molekulare Medizin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59343-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59343-7_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63941-8

  • Online ISBN: 978-3-642-59343-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics