Skip to main content

Ion Beam Studies of Silicon Oxidation and Oxynitridation

  • Chapter
Fundamental Aspects of Silicon Oxidation

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 46))

  • 441 Accesses

Abstract

In this chapter we discuss the use of ion beam methods to examine silicon oxidation and oxynitridation. Ion beam analysis, although usually performed ex-situ following growth, offers precise information about the composition and growth mechanism of films. We limit our work to an examination of methods involving ion beam energies E ≥ 50 keV. We discuss Rutherford backscattering spectroscopy (RBS), elastic recoil detection (ERD), medium energy ion scattering (MEIS), nuclear reaction analysis (NRA), and nuclear resonance profiling (NRP). SIMS and other lower energy methods are not reviewed; instead the reader is referred to reviews elsewhere [1,2]. For many isotopes SIMS has superior detection limits than RBS and NRA. It provides very high sensitivity (in some cases on the order of 0.001 atomic %) and can be performed rapidly [3,4]. For many of the applications discussed below, however, conventional SIMS techniques do not offer the depth resolution needed due to matrix effects and ion beam mixing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. A. Benninghoven, F.G. Rudenauer, and H.W. Werner, Secondary Ion Mass Spectrometry: Basic Concepts, Instrumental Aspects, Applications and Trends, John Wiley and Sons (1987).

    Google Scholar 

  2. K. Wittmack, Surf. Sci., 112, 168 (1981).

    Article  Google Scholar 

  3. M.R. Frost and C.W. Magee, Appl. Surf. Sci., 104/105, 379 (1996).

    Article  CAS  Google Scholar 

  4. C.J. Han and C.R. Helms, J. Electrochem. Chem., 135, 1824 (1988).

    Article  CAS  Google Scholar 

  5. I.J.R. Baumvol, Surface Science Reports, 36, 5 (1999).

    Article  Google Scholar 

  6. E.P. Gusev, H.C. Lu, E. Garfunkel, T. Gustafsson, and M.L. Green, IBM J. Res. Dev., 43, 265 (1999).

    Article  CAS  Google Scholar 

  7. W.K. Chu, J.W. Mayer, and M.-A. Nicolet, Backscattering Spectrometry, Academic Press, London (1978).

    Google Scholar 

  8. L.C. Feldman and J.W. Mayer, Fundamentals of Surface and Thin Film Ana lysis, North- Holland (1986).

    Google Scholar 

  9. M.A. Kumakhov and F.F. Komarov, Energy loss and ion ranges in solids, Gordon & Breach (1991).

    Google Scholar 

  10. H. Bichsel, Rev. Mod. Phys., 60, 663 (1988).

    Article  CAS  Google Scholar 

  11. J.F. Ziegler, J. Biersack, and U. Littmack, The Stopping Power and Range of ions in Solids, Pergamon Press (1985).

    Google Scholar 

  12. P. Sigmund, in Interaction of Charged Particles with Solids and Surfaces, A. Gras-Marti, Editor, Plenum Press (1991).

    Google Scholar 

  13. N. Bohr, Mat. Fys. Medd. Dan. Vid. Selsk., 18, No.8 (1948).

    Google Scholar 

  14. J.F. van der Veen, Surf. Sci. Rep., 5, 199 (1985).

    Article  Google Scholar 

  15. L.R. Doolittle, Nucl. Instr. Meth., B 9, 344 (1985).

    Google Scholar 

  16. G. Dollinger, Nucl. Instr. Meth., B 79, 513 (1993).

    Google Scholar 

  17. W.A. Lanford, Nucl. Instr. Meth., B 66, 65 (1992).

    Google Scholar 

  18. W.M. Arnoldbik, W. Wolfswinkel, D.K. Inia, et al., Nucl. Instr. Meth., B 118, 566 (1996).

    Google Scholar 

  19. H.D. Carstanjen, Nucl. Instr. Meth., B 136–138, 1183 (1998).

    Google Scholar 

  20. R.A. Weller, K.McDonald, D. Pedersen, and J.A. Keenan, Nucl. Instr. Meth., B 118, 556 (1996).

    Google Scholar 

  21. K. Kimura, K. Ohshima, and M.H. Mannami, Appl. Phys. Lett., 64, 2233 (1994).

    Article  Google Scholar 

  22. Y. Kido, H. Namba, T. Nishimura, A. Ikeda, Y. Yan, and A. Yagashita, Nucl. Instr. Meth., B 136–138, 798 (1998).

    Google Scholar 

  23. G. Demortier, Third International Conference on Chemical Analysis, Namur, Belgium: Nucl. Instr. Meth., B 66 (1992).

    Google Scholar 

  24. R.D. Evans, The Atomic Nucleus McGraw Hill, New York (1955).

    Google Scholar 

  25. I. Vickridge and G. Amsel, Nucl. Instr. Meth., B 64, 687 (1992).

    Google Scholar 

  26. I. Vickridge and G. Amsel, Nucl. Instr. Meth., B 45, 6 (1990).

    Google Scholar 

  27. L.G. Gosset, J.-J. Ganem, I. Trimaille, et al., Nucl. Instr. Meth., B 136–138, 521 (1998).

    Google Scholar 

  28. I. Trimaille, J.J. Ganem, L.G. Gosset, S. Rigo, I.J.R. Baumvol, F.C. Stedile, F. Rochet, G. Dufour, and F. Jolly, in Fundamental Aspects of Ultrathin Dielectrics on Si-based Devices, E. Garfunkel, E. Gusev, and A. Vul’, Editors, Kluwer Academic Publishers, Dordrecht, 165 (1998).

    Chapter  Google Scholar 

  29. B.E. Deal and A.S. Grove, J. Appl. Phys., 36, 3770 (1965).

    Article  CAS  Google Scholar 

  30. A.S. Grove, Physics and Technology of Semicondoctor Devices. John Wiley and Sons (1967).

    Google Scholar 

  31. A.M. Stoneham, C.R.M. Grovenor, and A. Cerezo, Phil. Mag., B 55, 201 (1987).

    Article  CAS  Google Scholar 

  32. H.Z. Massoud, J.D. Plummer, and E.A. Irene, J. Electrochem. Soc., 132, 2693 (1985).

    Article  CAS  Google Scholar 

  33. R. de Almeida, S. Goncalves, I.J.R. Baumvol, and F.C. Stedile, Phys. Rev., B 61, 12992 (2000).

    Google Scholar 

  34. A.C. Diebold, D. Venables, Y. Chabal, D. Muller, M. Weldon, and E. Garfunkel, Materials Science in Semicondoctor Processing, 2, 103 (1999).

    Article  CAS  Google Scholar 

  35. F.C. Stedile, I.J.R. Baumvol, J.-J. Ganem, S. Rigo, I. Trimaille, G. Battistig, W.H. Schulte, and H.W. Becker, Nucl. Instr. Meth., B 85, 248 (1994).

    Google Scholar 

  36. J.-J. Ganem, G. Battistig, S. Rigo, and I. Trimaille, Appl. Surf. Sci., 65/66, 647 (1993).

    Article  Google Scholar 

  37. E.P. Gusev, B.C. Lu, T. Gustafsson, and E. Garfunkel, Appl. Surf. Sci., 104/105, 329 (1996).

    Article  CAS  Google Scholar 

  38. A. Pasquarello, M.S. Hybertsen, and R. Car. Atomic Scale Processes during Oxidation at the Si(001)-Si0 2 Interface. in 44th American Vacuum Society National Symposium (1997).

    Google Scholar 

  39. W.A. Tiller, J. Electrochem. Soc., 128, 689 (1981).

    Article  CAS  Google Scholar 

  40. C.J. Han and C.R. Helms, J. Electrochem. Chem., 135, 1825 (1988).

    Google Scholar 

  41. J.-J. Ganem, I.Trimaille, P. André, S. Rigo, F.C. Stedile, I.J.R. Baumvol, J. Appl. Phys., 81, 8109 (1997).

    Article  CAS  Google Scholar 

  42. T. Akermark, L.G. Cosset, J.-J. Ganem, I. Trimaille, I. Vickridge, and S. Rigo, J. Appl. Phys., 86,1153 (1999).

    Article  CAS  Google Scholar 

  43. T.E. Jackman, J.R. McDonald, L.C. Feldman, P.J. Silverman, and I. Stensgaard, Surf. Sci., 100, 35 (1980).

    Article  CAS  Google Scholar 

  44. L.C. Feldman, P.J. Silverman, J.S. Williams, T.E. Jackman, and I. Stensgaard, Phys. Rev. Lett., 41, 1396 (1978).

    Article  CAS  Google Scholar 

  45. R.L. Kaufman, L.C. Feldman, P.J. Silverman, and R.A. Zuhr, Appl. Phys. Lett., 32, 93 (1978).

    Article  Google Scholar 

  46. H.C. Lu, PhD Thesis, Rutgers University, Piscataway, NJ, USA (1997).

    Google Scholar 

  47. Y.P. Kim, S.K. Choi, H.K. Kim, and D.W. Moon, App!. Phys. Lett., 71, 3505 (1997).

    Google Scholar 

  48. K. Ohishi, T. Hattori, Jpn. J. Appl. Phys., 33, L 675 (1994).

    Article  Google Scholar 

  49. T. Hattori, CRC Crit. Rev. Solid State Mater. Sci., 20, 339 (1995).

    Article  CAS  Google Scholar 

  50. M.P. Murrell, C.J. Sofield, and S. Sudgen, Phil. Mag., B 63, 1277 (1991).

    Article  CAS  Google Scholar 

  51. I.J.R. Baumvol, L. Borucki, J. Chaumont, et al., Nucl. Instr. Meth., B 118, 499 (1996).

    Google Scholar 

  52. F. Gorris, C. Krug, S. Kubsky, I.J.R. Baumvol, W.H. Schulte, and C. Rolfs, Phys. Stat. Sol., A 173, 167 (1999).

    Article  Google Scholar 

  53. I.C. Vickridge, 0. Kaitasov, R.J. Chater, and J.C. Kilner, Nucl. Instr. Meth., B 161–163, 441 (2000).

    Google Scholar 

  54. I.J.R. Baumvol, C.Krug, F.C. Stedile, F. Gorris, and W.H. Schulte, Phys. Rev., B 60, 1492 (1999).

    Google Scholar 

  55. T. Hori, H. Iwasaki, and K. Tsuji, IEEE Trans. Electron Dev., 36, 340 (1989).

    Article  CAS  Google Scholar 

  56. K. Kumar, A.I. Chou, C. Lin, P. Choudhury, and J.C. Lee, Appl. Phys. Lett., 70, 384 (1997).

    Article  CAS  Google Scholar 

  57. M.M. Moslehi, S.C. Shatas, and K.C. Saraswat, Appl. Phys. Lett., 47, 1353 (1985).

    Article  CAS  Google Scholar 

  58. T. Hori, Microelectronic Engineering, 22, 245 (1993).

    Article  CAS  Google Scholar 

  59. H. Fukuda, T. Arakawa, and S. Ohno, Jpn. J. Appl. Phys., 29, L2333 (1990).

    Article  CAS  Google Scholar 

  60. H. Hwang, W. Ting, B. Maiti, D.L. Kwong, and J. Lee, Appl. Phys. Lett., 57, 1010 (1990).

    Article  CAS  Google Scholar 

  61. M.L. Green, D. Brasen, K.W. Evans-Lutterodt, et al., Appl. Phys. Lett., 65, 848 (1994).

    Article  CAS  Google Scholar 

  62. D.G.J. Sutherland, H. Akatsu, M. Copel, et al., J. Appl. Phys., 78, 6761 (1995).

    Article  CAS  Google Scholar 

  63. A.B. Joshi, J. Ahn, and D.L. Kwong, IEEE Electron Dev. Lett., 14, 560 (1993).

    Article  CAS  Google Scholar 

  64. G. Lucovsky, in Fundamental Aspects of Ultrathin Dielectrics on Si-based Devices, E. Garfunkel, E.P. Gusev, and A.Y. Vul’, Editors Kluwer Academic Publishers: Dordrecht/Boston/London, p. 147 (1998).

    Chapter  Google Scholar 

  65. D.A. Buchanan, IBM J. Res. Dev., 43, 245 (1999).

    CAS  Google Scholar 

  66. T.P. Ma, Appl. Surf. Sci., 117/118, 259 (1997).

    Article  CAS  Google Scholar 

  67. T.P. Ma, IEEE Trans. Electron Dev., ED-45, 680 (1998).

    Article  CAS  Google Scholar 

  68. G. Lucovsky, IBM J. Res. Dev., 43, 301 (1999).

    Article  CAS  Google Scholar 

  69. S.V. Hattangady, H. Niimi, and G. Lucovsky, Appl. Phys. Lett., 66, 3495 (1995).

    Article  CAS  Google Scholar 

  70. Z.H. Lu, SR Tay, R. Cao, and P. Pianetta, Appl. Phys. Lett., 67, 2836 (1995).

    Article  CAS  Google Scholar 

  71. A. Kamath, D.L. Kwong, Y.M. Sun, P.M. Blass, S. Whaley, and J.M. White, Appl. Phys. Lett., 70, 63 (1997).

    Article  CAS  Google Scholar 

  72. E.C. Carr, K.A. Ellis, and R.A. Buhrman, Appl. Phys. Lett., 66, 1492 (1995).

    Article  CAS  Google Scholar 

  73. M. Hillert, S. Jonsson, and B. Sundman, Z. Metallkd., 83, 648 (1992).

    CAS  Google Scholar 

  74. G.M. Rignanese, A. Pasquarello, J.C. Charlier, X. Gonze, and R. Car, Phys. Rev. Lett., 79, 5174 (1997).

    Article  CAS  Google Scholar 

  75. J.P. Chang, M.L. Green, V.M. Donnelly, et al., Jour. Appl. Phys., 87, 4449 (2000).

    Article  CAS  Google Scholar 

  76. H. Tompkins, R. Gregory, P. Deal, and S. Smith, J. Vac. Sci. Tech., 17, 391 (1999).

    Article  CAS  Google Scholar 

  77. B. Brijs, J. Deleu, T. Conrad, et al, Nucl. Instr. Meth., B 161–163, 429 (2000).

    Google Scholar 

  78. H.T. Tang, W.N. Lennard, M. Zinke-Allmang, et al., Appl. Phys. Lett., 64, 64 (1994).

    Article  Google Scholar 

  79. G. Amsel, Nucl. Instr. Meth., 92, 481 (1971).

    Article  CAS  Google Scholar 

  80. K. Bethge, Nucl. Instr. Meth., B 10/11 (1985).

    Google Scholar 

  81. K. Bethge, Nucl. Instr. Meth., B 66, 146 (1992).

    Article  Google Scholar 

  82. J.A. Davies, Nucl. Instr. Meth., 218, 1 (1983).

    Article  Google Scholar 

  83. K.M. Horn and W.A. Lanford, Nucl. Instr. Meth., B 34, 1 (1998).

    Google Scholar 

  84. I.J.R. Baumvol, F.C. Stedile, J.-J. Ganem, I. Trimaille, and S. Rigo, Appl. Phys. Lett., 70, 2007 (1997).

    Article  CAS  Google Scholar 

  85. I.J.R. Baumvol, F.C. Stedile, J.J. Ganem, S. Rigo, and I. Trimaille, J. Electrochem. Soc., 142, 1205 (1995).

    Article  CAS  Google Scholar 

  86. F. Rochet, H. Roulet, G. Dufour, and F. Sirotti, Surface Science, 320, 369 (1994).

    Article  Google Scholar 

  87. C.H.F. Peden, J.W. Rogers, N.D. Shinn, K.B. Kidd, and K.L. Tsang, Phys. Rev. B, 47, 15622 (1993).

    Google Scholar 

  88. K.A. Ellis and R.A. Buhrman, IBM J. Res. Dev., 43, 287 (1999).

    Article  CAS  Google Scholar 

  89. K.A. Ellis and R.A. Buhrman, Appl. Phys. Lett., 68, 1696 (1996).

    Article  CAS  Google Scholar 

  90. M.J. Hartig and P.J. Tobin, J. Electrochem. Soc., 143, 1753 (1996).

    Article  CAS  Google Scholar 

  91. A. Gupta, S. Toby, E.P. Gusev, et al., Progr. Surf. Sci., 59, 103 (1998).

    Article  CAS  Google Scholar 

  92. N.S. Saks, D.I. Ma, and W.B. Fowler, Appl. Phys. Lett., 67, 374 (1995).

    Article  CAS  Google Scholar 

  93. E.P. Gusev, M.L. Green, H.C. Lu, et al., J. Appl. Phys., 84, 2980 (1998).

    Article  CAS  Google Scholar 

  94. H. C. Lu, E. P. Gusev, T. Gustafsson, M. L. Green, D. Brasen, and E. Garfunkel, Microelectron. Eng., 36, 29 (1997).

    Article  CAS  Google Scholar 

  95. H. C. Lu, E. P. Gusev, T. Gustafsson, and E. Garfunkel, J. Appl. Phys. 81, 6992 (1997).

    Article  CAS  Google Scholar 

  96. M.L. Green, T. Sorsch, L. Feldman, et al., Appl. Phys. Lett., 71, 2978 (1997).

    Article  CAS  Google Scholar 

  97. M.L. Green, D. Brasen, L. Feldman, et al., in Fundamental Aspects of Ultrathin Dielectrics on Si-based Devices, E. Garfunkel, E.P. Gusev, and A.Y. Vul’, Editors, 1998, Kluwer Academic Publishers: Dordrecht/Boston/London. p. 181.

    Google Scholar 

  98. L.C. Feldman, E.P. Gusev, and E. Garfunkel. Passivation of the Silicon Surface and the Silicon Revolution in 8th International Symposium on Passivity of Metals and Semiconductors, The Electrochemical Society (Pennington, NJ) (1999).

    Google Scholar 

  99. K. Vanheusden and R.A.B. Devine, Appl. Phys. Lett., 76, 3109 (2000).

    Article  CAS  Google Scholar 

  100. J.W. Lyding, K. Hess, and I.C. Kizilyalli, Appl. Phys. Lett., 68, 2526 (1996).

    Article  CAS  Google Scholar 

  101. M. Copel and R.M. Tromp, Phys. Rev. Lett., 72, 1236 (1994).

    Article  CAS  Google Scholar 

  102. J. Krauser, A. Weidinger, and D. Brauning, in The Physics and Chemistry of Si02 and the Si-Si02 Interface-3, H.Z. Massoud, E.H. Poindexter, and C.R. Helms, Editors, 184 (1996).

    Google Scholar 

  103. F.H.P.M. Habraken, E.H.C. Ullersma, W.M. Arnoldbik, and A.E.T. Kuiper, in Fundamental Aspects of Ultrathin Dielectrics on Si-based Devices, E. Garfunkel, E.P. Gusev, and A. Vul’, Editors. 1998, Kluwer Academic Publishers: Dordrecht. p. 411.

    Chapter  Google Scholar 

  104. I.J.R. Baumvol, E.P. Gusev, F.C. Stedile, F.L. Fleire Jr., M.L. Green, and D. Brasen, Appl. Phys. Lett., 72, 450 (1998).

    Article  CAS  Google Scholar 

  105. I.J.R. Baumvol, F.C. Stedile, C. Radke, et al., Nucl. Instr. Meth., B 136–138, 204 (1998).

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schulte, W.H., Gustafsson, T., Garfunkel, E., Baumvol, I.J.R., Gusev, E.P. (2001). Ion Beam Studies of Silicon Oxidation and Oxynitridation. In: Chabal, Y.J. (eds) Fundamental Aspects of Silicon Oxidation. Springer Series in Materials Science, vol 46. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56711-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56711-7_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62583-1

  • Online ISBN: 978-3-642-56711-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics