Skip to main content

NC-AFM Imaging of Surface Reconstructions and Metal Growth on Oxides

  • Chapter
Noncontact Atomic Force Microscopy

Part of the book series: NanoScience and Technology ((NANO))

  • 1109 Accesses

Abstract

There has been an explosion of interest in metal oxide surfaces in the past decade. This reflects the technological importance of these surfaces in, for instance, catalysis and electronics, as well as the availability of techniques to make their study tractable. There still remains a problem in connection with the large and important class of oxides that are insulating. This prevents their study by a number of techniques, including STM. In principle, NC-AFM offers an alternative imaging tool for insulators. As a step towards this goal we have explored the use of NC-AFM in imaging surface reconstructions and metal growth on a number of oxide surfaces at atomic or close-to-atomic resolution. Most of these surfaces were chosen to have a sufficiently high conductivity to allow their characterisation using conventional methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Raza, C.L. Pang, S.A. Haycock, G. Thornton: Evidence of discrete bond breaking steps in the lхl to 1х3 phase transition of TiO2(100), Phys. Rev. Lett. 82, 5265–5268 (1999)

    Article  CAS  Google Scholar 

  2. H. Raza, C.L. Pang, S.A. Haycock, G. Thornton: Non-contact atomic force microscopy imaging of TiO2(100) surfaces, Appl. Surf. Sci. 140, 271–275 (1999)

    Article  CAS  Google Scholar 

  3. C.L. Pang, S.A. Haycock, H. Raza, P.W. Murray, G. Thornton, O. Gulseren, R. James, D.W. Bullett: Added row model of TiO2(110)lх2, Phys. Rev. B 58, 1586–1589 (1998)

    Article  CAS  Google Scholar 

  4. C.L. Pang, H. Raza, S.A. Haycock, G. Thornton: Imaging reconstructed TiO2 surfaces with non-contact atomic force microscopy, Appl. Surf. Sci. 157, 223–238 (2000)

    Article  Google Scholar 

  5. C.L. Pang, S.A. Haycock, H. Raza, P.J. Møller, G. Thornton: Structures of the 4х1 and 1х2 reconstructions of SnO2(110), Phys. Rev. B 62, R7775–R7778 (2000)

    Article  CAS  Google Scholar 

  6. G.L. Shen, R. Casanova, G. Thornton, I. Colera: Correlation between the surface conductivity and structure of SnO2(110), J. Phys. Condens. Matter. 3, S291–S296 (1991)

    Article  CAS  Google Scholar 

  7. C.L. Pang, H. Raza, S.A. Haycock, G. Thornton: Noncontact atomic force microscopy imaging of ultra-thin Al2O3 on NiAl(110), Phys. Rev. B (submitted 2001)

    Google Scholar 

  8. J. Libuda, F. Winkelmann, M. Bäumer, H.-J. Freund, Th. Bertrams, H. Ned-dermeyer, K. Müller: Structure and defects of an ordered alumina film on NiAl(110), Surf. Sci. 318, 61–73 (1994)

    Article  CAS  Google Scholar 

  9. M. Bäumer, H.-J. Freund: Metal deposits on well-ordered oxide films, Prog. Surf. Sci. 61, 127–198 (1999)

    Article  Google Scholar 

  10. Q. Guo, I. Cocks, E.M. Williams: Dual tunnelling sites on metal-oxide surfaces: a scanning tunnelling microscopy study of TiO2(110), J. Phys. D 31, 2231–2235 (1998)

    Article  CAS  Google Scholar 

  11. C.L. Pang, H. Raza, S.A. Haycock, G. Thornton: Growth of copper and palladium on α-Al2O3(0001), Surf. Sci. 460, L510–L514 (2000)

    Article  CAS  Google Scholar 

  12. D.A. Chen, M.C. Bartelt, R.Q. Hwang, K.F. McCarty: Self-limiting growth of copper islands on TiO2(110)-(lхl), Surf. Sci. 450, 78–97 (2000)

    Article  CAS  Google Scholar 

  13. M. Valden, X. Lai, D.W. Goodman: Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties, Science 281, 1647–1650 (1998)

    Article  CAS  Google Scholar 

  14. M. Gautier-Soyer, S. Gota, L. Douillard, J.-P. Duraud, P. Le Fevre: Submono-layer scaling due to coalescence of subnanometric copper clusters on alumina, Phys. Rev. B 54, 10366–10369 (1996)

    Article  CAS  Google Scholar 

  15. D. Beysens, CM. Knobler, H. Schaffar: Scaling in the growth of aggregates on a surface, Phys. Rev. B 41, 9814–9818 (1990)

    Article  CAS  Google Scholar 

  16. K. Højrup Hansen, T. Worren, S. Stempel, E. Lægsgaard, M. Bäumer, H.-J. Freund, F. Besenbacher, I. Stensgaard: Palladium nanocrystals on Al2O3: Structure and adhesion energy, Phys. Rev. Lett. 83, 4120–4123 (1999)

    Article  Google Scholar 

  17. C.L. Pang, C.A. Muryn, H. Raza, A.P. Woodhead, V.R. Dhanak, S.A. Haycock, G. Thornton et al.: Scanning probe microscopy and surface extended X-ray absorption fine structure study of K/TiO2(110) (to be submitted)

    Google Scholar 

  18. T. Bredrow, E. Aprà, M. Catti, G. Pachionni: Cluster and periodic ab-initio calculations on K/TiO2(110), Surf. Sci. 418, 150–165 (1998)

    Article  Google Scholar 

  19. A. Fujishima, K. Honda: Electrochemical photolysis of water at a semiconductor electrode, Nature 238, 37–40 (1972)

    Article  CAS  Google Scholar 

  20. P.J.D. Lindan, N.M. Harrison, M.J. Gillan: Mixed dissociative and molecular adsorption of water on the rutile (110) surface, Phys. Rev. Lett. 80, 762–765 (1998)

    Article  CAS  Google Scholar 

  21. I.M. Brookes, C.A. Muryn, G. Thornton: Imaging water dissociation on TiO2(110), Phys. Rev. Lett. 87, 266103 (2001)

    Article  CAS  Google Scholar 

  22. H. Raza, S.P. Harte, C.A. Muryn, P.L. Wincott, G. Thornton, R. Casanova, A. Rodriguez: NEXAFS studies of the reaction of SO2 with TiO2(100)-(lхl) and -(1х3), Surf. Sci. 366, 519–530 (1996)

    Article  CAS  Google Scholar 

  23. P.W. Murray, F.M. Leibsle, C.A. Muryn, H.J. Fisher, C.F.J. Flipse, G. Thornton: Interrelationship of structural elements on TiO2(100)-(lх3), Phys. Rev. Lett. 72, 689–692 (1994)

    Article  CAS  Google Scholar 

  24. H. Zajonz, H.L. Meyerheim, T. Gloege, W. Moritz, D. Wolf: Surface X-ray structure analysis of the TiO2(100)-(lх3) reconstruction, Surf. Sci. 398, 369–378 (1998)

    Article  CAS  Google Scholar 

  25. P.J.D. Lindan, N.M. Harrison: The structure of the reduced TiO2(100)lх3 reconstruction, Surf. Sci. 479, L375–L381 (2001)

    Article  CAS  Google Scholar 

  26. H. Onishi, Y. Iwasawa: Dynamic visualization of a metal-oxide-surface/gas-phase reaction: Time-resolved observation by scanning tunneling microscopy at 800 K, Phys. Rev. Lett. 76, 791–794 (1996)

    Article  CAS  Google Scholar 

  27. R.A. Bennett, P. Stone, N.J. Price, M. Bowker: Two (1х2) reconstructions of TiO2(110): Surface rearrangement and reactivity studied using elevated temperature scanning tunneling microscopy, Phys. Rev. Lett. 82, 3831–3834 (1999)

    Article  CAS  Google Scholar 

  28. U. Diebold, J.F. Anderson, K.-O. Ng, D. Vanderbilt: Evidence for the tunneling site on transition-metal oxides: TiO2(110), Phys. Rev. Lett. 77, 1322–1325 (1996)

    Article  CAS  Google Scholar 

  29. P.J. Möller, M.-C. Wu: Surface geometrical structure and incommensurate growth — ultrathin Cu films on TiO2(110), Surf. Sci. 224, 265–276 (1989)

    Article  Google Scholar 

  30. P.W. Murray, N.G. Condon, G. Thornton: Effect of stoichiometry on the structure of TiO2(110), Phys. Rev. B 51, 10989–10997 (1995)

    Article  CAS  Google Scholar 

  31. A. Berkó, F. Solymosi: Study of clean TiO2(110) surface by scanning tunneling microscopy and spectroscopy, Langmuir 12, 1257–1261 (1996)

    Article  Google Scholar 

  32. R.E. Tanner, M.R. Castell, G.A.D. Briggs: High resolution scanning tunnelling microscopy of the rutile TiO2(110) surface, Surf. Sci. 412/413, 672–681 (1998)

    Article  CAS  Google Scholar 

  33. C.L. Pang, S.A. Haycock, H. Raza, G. Thornton, O. Gülseren, R. James, D.W. Bullett: Comment on ‘High resolution scanning tunnelling microscopy of the rutile TiO2(110) surface’, Surf. Sci. 437, 261–262 (1999)

    Article  CAS  Google Scholar 

  34. M. Ashino, Y. Sugawara, S. Morita, M. Ishikawa: Atomic resolution noncontact atomic force and scanning tunneling microscopy of TiO2(110)-(lхl) and (1х2): Simultaneous imaging of surface structures and electronic states, Phys. Rev. Lett. 86, 4334–4337 (2001)

    Article  CAS  Google Scholar 

  35. M. Ashino, T. Uchihashi, K. Yokoyama, Y. Sugawara, S. Morita, M. Ishikawa: STM and atomic-resolution noncontact AFM of an oxygen-deficient TiO2(110) surface, Phys. Rev. B 61, 13955–13959 (2000)

    Article  CAS  Google Scholar 

  36. M. Ashino, T. Uchihashi, K. Yokoyama, Y. Sugawara, S. Morita, M. Ishikawa: Atomic scale structures on a non-stoichiometric TiO2(110) surface studied by noncontact AFM, Appl. Surf. Sci. 157, 212–217 (2000)

    Article  CAS  Google Scholar 

  37. S.D. Elliott, S.P. Bates: A first principles survey of stoichiometric (1х2) reconstructions on the rutile surface, Surf. Sci. 495, 211–233 (2001)

    Article  CAS  Google Scholar 

  38. R.A. Bennett, M.A. Newton, R.D. Smith, J. Evans, M. Bowker: TiO2 surface structures for the directed growth of metal nanoparticles via metal and met-alorganic chemical vapour deposition, J. Mater. Sci. and Technol. (submitted 2002)

    Google Scholar 

  39. Q. Guo, I. Cocks, E.M. Williams: Surface structure of (1х2) reconstructed TiO2(110) studied using electron stimulated desorption ion angular distribution, Phys. Rev. Lett. 77, 3851–3854 (1996)

    Article  CAS  Google Scholar 

  40. S. Gan, Y. Liang, D.R. Baer, A.W. Grant: Effects of titania surface structure on the nucleation and growth of Pt nanoclusters on rutile TiO2(110), Surf. Sci. 475, 159–170 (2001)

    Article  CAS  Google Scholar 

  41. U. Diebold: Oxide Surfaces — the Chemical Physics of Solid Surfaces, ed. by D.P. Woodruff (Elsevier Science 2001)

    Google Scholar 

  42. G. Charlton, P.B. Howes, C.L. Nicklin, P. Steadman, J.S.G. Taylor, C.A. Muryn, S.P. Harte, J. Mercer, R. McGrath, D. Norman, T.S. Turner, G. Thornton: Relaxation of TiO2(110)-(lхl) using surface X-ray diffraction, Phys. Rev. Lett. 78, 495–498 (1997)

    Article  CAS  Google Scholar 

  43. B.L. Maschhoff, J.-M. Pan, T.E. Madey: Medium-energy backscattered electron-diffraction studies of TiO2(110) — relation to surface structure, Surf. Sci. 259, 190–206 (1991)

    Article  CAS  Google Scholar 

  44. K. Fukui, H. Onishi, Y. Iwasawa: Atom-resolved image of the TiO2(110) surface by noncontact atomic force microscopy, Phys. Rev. Lett. 79, 4202–4205 (1997)

    Article  CAS  Google Scholar 

  45. R. Franchy: Growth of thin, crystalline oxide, nitride and oxynitride films on metal and metal alloy surfaces, Surf. Sci. Rep. 38, 195–294 (2000)

    Article  CAS  Google Scholar 

  46. S.A. Chambers: Epitaxial growth and properties of thin film oxides, Surf. Sci. Rep. 39, 105–180 (2000)

    Article  CAS  Google Scholar 

  47. W. Weiss, A. Barbieri, M.A. van Hove, G.A. Somorjai: Surface-structure determination of an oxide film grown on a foreign substrate: Fe3O4 multilayer on Pt(111) identified by low-energy-electron diffraction, Phys. Rev. Lett. 71, 1848–1851 (1993)

    Article  CAS  Google Scholar 

  48. A.B. Boffa, H.C. Galloway, P.W. Jacobs, J.J. Benítez, J.D. Batteas, M. Salmeron, A.T. Bell, G.A. Somorjai: The growth and structure of titanium-oxide films on Pt(111) investigated by LEED, XPS, ISS, and STM, Surf. Sci. 326, 80–92 (1995)

    Article  CAS  Google Scholar 

  49. I. Stich, J. Tóbik, R. Pérez, K. Terakura, S.H. Ke: Tip—surface interactions in noncontact atomic force microscopy on reactive surfaces, Prog. Surf. Sci. 64, 179–191 (1997)

    Article  Google Scholar 

  50. A.S. Foster, C. Barth, A.L. Shluger, M. Reichling: Unambiguous interpretation of atomically resolved force microscopy images of an insulator, Phys. Rev. Lett. 86, 2373–2376 (2001)

    Article  CAS  Google Scholar 

  51. R. Bennewitz, A.S. Foster, L.N. Kantorovich, M. Bammerlin, Ch. Loppacher, S. Schär, M. Guggisberg, E. Meyer, A.L. Shluger: Atomically resolved edges and kinks of NaCl islands on Cu(111): Experiment and theory, Phys. Rev. B 62, 2074–2084 (2000)

    Article  CAS  Google Scholar 

  52. C. Barth, M. Reichling: Imaging the atomic arrangements on the high-temperature reconstructed α-Al2O3(0001) surface, Nature 414, 54–57 (2001)

    Article  CAS  Google Scholar 

  53. H. Hosoi et al.: personal communication

    Google Scholar 

  54. R.D. Diehl, R. McGrath: Structural studies of alkali metal adsorption and coad-sorption on metal surfaces, Surf. Sci. Rep. 23, 43–172 (1996)

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pang, C.L., Thornton, G. (2002). NC-AFM Imaging of Surface Reconstructions and Metal Growth on Oxides. In: Morita, S., Wiesendanger, R., Meyer, E. (eds) Noncontact Atomic Force Microscopy. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56019-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56019-4_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62772-9

  • Online ISBN: 978-3-642-56019-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics