Skip to main content

NC-AFM Imaging of Adsorbed Molecules

  • Chapter
Noncontact Atomic Force Microscopy

Part of the book series: NanoScience and Technology ((NANO))

Abstract

High-resolution imaging of organic materials is of great importance in surface chemistry and physics. Although scanning tunneling microscopy (STM) has sufficient resolution for imaging conductive samples at an atomic scale, an STM tip often has to penetrate poorly conducting samples such as thick organic films to sustain a tunneling current [1,2]. Deformation and damage of sample surfaces and even the motion of isolated molecules then occur during scanning. On the other hand, atomic force microscopy (AFM) offers the possibility of imaging nonconductive samples. Contact or tapping AFM cannot avoid damage to both the tip apex and the sample surface due to a large loading force, and true atomic resolution has not therefore been achieved. Furthermore, contact AFM sometimes causes local deformation of soft materials and the motion of molecules adsorbed on substrates [3],4].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C.A. Lang, J.K.H. Horber, T.W. Hansch, W.M. Heckl, H. Mohwald: J. Vac. Sci. Technol. A 6, 368 (1989)

    Article  Google Scholar 

  2. M.H. Jericho, B.L. Blackfold, CD. Dahn, C. Frame, D. Maclean: J. Vac. Sci. Technol. A 8, 661 (1990)

    Article  CAS  Google Scholar 

  3. E. Meyer, L. Howald, R.M. Overney, H. Heinzelmann, J. Frommer, H.-J. Guntherodt, T. Wagner, H. Schier, S. Roth: Nature 349, 398 (1988)

    Article  Google Scholar 

  4. P.K. Hansma, J.P. Cleveland, M. Radmacher, D.A. Walters, P. Hillner, M. Bezanilla, M. Fritz, D. Vie, H.G. Hansma, C.B. Prater, J. Massie, L. Fuku-naga, J. Gurley, V. Elings: ;Appl. Phys. Lett. 64, 1738 (1994)

    Article  CAS  Google Scholar 

  5. B. Gotsmann, C. Schmidt, C. Seidel, H. Fuchs: Eur. Phys. J. B 4 (1998) 267 F.J. Giessibl: Science 267, 68 (1995)

    Article  CAS  Google Scholar 

  6. K. Kobayashi, H. Yamada, T. Horiuchi, K. Matsushige: Appl. Surf. Sci. 140, 281 (1999)

    Article  CAS  Google Scholar 

  7. S.M. Lindsay, M. Phillipp: Gene. Anal. Tech. 8, 8 (1991)

    CAS  Google Scholar 

  8. N.J. Tao, J.A. De Rose, S.M. Lindsay: J. Phys. Chem. 97, 910 (1993)

    Article  CAS  Google Scholar 

  9. J.E. Freud, M. Edelwirth, P. Krobel, W.M. Heckl: Phys. Rev. B 55, 5394 (1997)

    Article  Google Scholar 

  10. S.J. Sowerby, G.B. Petersen: J. Electroanal. Chem. 433, 85 (1997)

    Article  CAS  Google Scholar 

  11. T. Minobe, T. Uchihashi, T. Tsukamoto, S. Orisaka, T. Sugawara, S. Morita: Appl. Surf. Sci. 140, 298 (1999)

    Article  CAS  Google Scholar 

  12. T. Uchihashi, Y. Sugawara, T. Tsukamoto, M. Ohta, S. Morita, M. Suzuki: Phys. Rev. B 56, 9834 (1997)

    Article  CAS  Google Scholar 

  13. T. Uchihashi, Y. Sugawara, T. Tsukamoto, T. Minobe, S. Orisaka, T. Okada, S. Morita: Appl. Surf. Sci. 140, 304 (1999)

    Article  CAS  Google Scholar 

  14. K. Yokoyama, T. Ochi, Y. Sugawara, S. Morita: Phys. Rev. Lett. 83, 5023 (1999)

    Article  CAS  Google Scholar 

  15. J.D. Watson, N.H. Jopkins, J.W. Roberts, J.A. Steits, A.M. Weiner: Molecular Biology of the Gene (The Benjamin/Cummings Publishing Company, Reading, MA 1987)

    Google Scholar 

  16. 16.T. Thundat, D.P. Allison, R.J. Warmack: Nucleic Acids Res. 22, 4224 (1994)

    Article  CAS  Google Scholar 

  17. S.S. Wong, A.T. Woolley, T.W. Odom, J.L. Huang, P. Kim, D.V. Vezenov, C.M. Liber: Appl. Phys. Lett. 73, 3465 (1998)

    Article  CAS  Google Scholar 

  18. E. Delamarche, B. Michel, Ch. Gerber, D. Anselmetti, H.-J. Guntherodt, H. Wolf, H. Ringsdorf: Langmuir 10, 2869 (1994)

    Article  CAS  Google Scholar 

  19. I. Touzov, C.B. Gorman: J. Phys. Chem. B 101, 5263 (1997)

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sugawara, Y. (2002). NC-AFM Imaging of Adsorbed Molecules. In: Morita, S., Wiesendanger, R., Meyer, E. (eds) Noncontact Atomic Force Microscopy. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56019-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56019-4_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62772-9

  • Online ISBN: 978-3-642-56019-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics