Skip to main content

Part of the book series: Springer Series in Advanced Microelectronics ((MICROELECTR.,volume 11))

  • 544 Accesses

Abstract

In this chapter, four important applications of high-frequency bipolar transistors — ECL digital circuits, high-speed optical data transmission systems, RF circuits and BiCMOS circuits — are briefly considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.D. Cressler. SiGe HBT technology: a new contender for Si-based RF and microwave circuit applications. IEEE Trans. Microwave Theory Tech., 46(5):572–589, 1998.

    Article  Google Scholar 

  2. D.K. Lynn, C.S. Meyer, D.J. Hamilton. Analysis and Design of Integrated Circuits. McGraw-Hill, New York, 1967.

    Google Scholar 

  3. H.H. Mül ler, W.K. Owens, P.W.J. Verhofstadt. Fully compensated emitter-coupled logic: eliminating the drawbacks of conventional ECL. IEEE J. Solid-State Circuits, 8(5):362–367, 1973.

    Article  Google Scholar 

  4. H.Y. Hsieh, K. Chin, C.-T. Chuang. Power partition and emitter size optimization for bipolar ECL circuits. IEEE J. Solid-State Circuits, 28(5):548–552, 1993.

    Article  Google Scholar 

  5. J.M. McGregor, D.J. Roulston, J.S. Hamel, M. Vaidyanathan, S.C. Jain, P. Balk. A simple expression for ECL propagation delay including non-quasi-static effects. Solid-State Electron., 36(3):391–396, 1993.

    Article  Google Scholar 

  6. G.R. Wilson. Advances in bipolar VLSI. Proc. IEEE, 78(11):1707–1719, 1990.

    Article  Google Scholar 

  7. S. Colaco, R. Davies, D. Healey, O. Choy. Multilevel differential logic — the bipolar alternative. J. Semicustom ICs, 3(4):21–27, 1986.

    Google Scholar 

  8. B. Razavi, Y. Ota, R.G. Swartz. Design techniques for low-voltage high-speed digital bipolar circuits. IEEE J. Solid-State Circuits, 29(3):332–339, 1994.

    Article  Google Scholar 

  9. H.M. Rein, R. Ranfft. Improved feedback ECL gate with low delay-power product for the subnanosccond region. IEEE Trans. Electron Devices, 12(1):80–82, 1977.

    Google Scholar 

  10. J.B. Hughes. Comments on “Improved Feedback ECL with low delay-power product for the subnanosecond region”. IEEE J. Solid-State Circuits, 13(2):276–278, 1978.

    Article  Google Scholar 

  11. V. Ramakrishnan, J.N. Albers, R.N. Nottenburg. Modified feedback ECL gate for Gb/s applications. IEEE J. Solid-State Circuits, 34(2):205–211, 1999.

    Article  Google Scholar 

  12. R.L. Treadway. DC analysis of current mode logic. IEEE Circuits Devices Mag., (March):21–35, 1989.

    Google Scholar 

  13. M. Kokado, M. Hyoshida, N. Miyoshi, K. Suzuki, M. Takaoka, N. Tsuzuki, H. Harada. A 54000-gate ECL array with substrate power supply. IEEE J. Solid-State Circuits, 24(5):1271–1274, 1989.

    Article  Google Scholar 

  14. M. Wurzer, T.F. Meister, H. Knapp, K. Aufinger, R. Schreiter, S. Boguth, L. Treitinger. 53 GHz/static frequency divider in a Si/SiGe bipolar technology. IEEE ISSCC Tech. Dig., pp. 206–207, 2000.

    Google Scholar 

  15. H. Knapp, W. Wilhelm, M. Wurzer. A low-power 15-GHz frequency divider in a 0.8μm silicon bipolar technology. IEEE Trans. Microwave Theory Tech., 48(2):205–208, 2000.

    Article  Google Scholar 

  16. H. Knapp, T.F. Meister, M. Wurzer, K. Aufinger, S. Boguth, L. Treitinger. A low-power 20-GHz SiGe dual-modulus prescaler. IEEE MTT-S Dig., pp. 731–734, 2000.

    Google Scholar 

  17. H. Knapp, T.F. Meister, M. Wurzer, D. Zös chg, K. Aufinger, L. Treitinger. A 79-GHz dynamic frequency divider in SiGe bipolar technology. IEEE ISSCC Tech. Dig., pp. 208–209, 2000.

    Google Scholar 

  18. M. Möller, H.-M. Rein, H. Wernz. 13 Gb/s Si-bipolar AGC amplifier IC with high gain and wide dynamic range for optical-fiber receivers. IEEE J. Solid-State Circuits, 29(7):815–822, 1994.

    Article  Google Scholar 

  19. K. Ohhata, T. Masuda, E. Ohue, K. Washio. Design of a 32.7-GHz bandwidth AGC amplifier IC with wide dynamic range implemented in SiGe HBT. IEEE J. Solid-State Circuits, 34(9):1290–1297, 1999.

    Article  Google Scholar 

  20. M. Wurzer, J. Böck, H. Knapp, W. Zirwas, F. Schumann, A. Felder. A 40-Gb/s integrated clock and data recovery circuit in a 50-GHz f T silicon bipolar technology. IEEE J. Solid-State Circuits, 34(9):1320–1324, 1999.

    Article  Google Scholar 

  21. G. Georgiou, Y. Bayens, Y.-K. Chen, A.H. Gnauck, C. Gröpper, P. Pachke, R. Pullela, M. Reinhold, C. Dorschky, J.-P. Mattia, T.W. von Mohrenfels, C. Schulien. Clock and data recovery IC for 40-Gb/s fiber-optic receiver. IEEE J. Solid-State Circuits, 37(9):1120–1125, 2002.

    Article  Google Scholar 

  22. Y.M. Greshishchev, P. Schvan, J.L. Showell, M.-L. Xu, J.J. Ojha, J.E. Rogers. A fully integrated SiGe receiver IC for 10-Gb/s data rate. IEEE J. Solid-State Circuits, 35(12):1949–1957, 2000.

    Article  Google Scholar 

  23. M. Reinhold, C. Dorschky, E. Rose, R. Pullela, P. Mayer, F. Kunz, Y. Baeyens, T. Link, J.-P. Mattia. A fully integrated 40-Gb/s clock and data recovery IC with 1:4 DEMUX in SiGe technology. IEEE J. Solid-State Circuits, 36(12):1937–1945, 2001.

    Article  Google Scholar 

  24. K. Washio. SiGe HBTs and ICs for optical-fiber communication systems. Solid-State Electron., 43:1619–1625, 1999.

    Article  Google Scholar 

  25. G. Freeman, M. Meghelli, Y. Kwark, S. Zier, A. Rylyakov, M.A. Sorna, T. Tanji, O.M. Schreiber, K. Walter, J.-S. Rich, B. Jagannathan, A. Joseph, S. Subbanna. 40-Gb/s circuits built from a 120-GHz f T SiGe technology. IEEE J. Solid-State Circuits, 37(9):1106–1114, 2002.

    Article  Google Scholar 

  26. Y. Bayens, G. Georgiou, J.S. Weiner, A. Leven, V. Houtsma, P. Pachke, Q. Lee, R.F. Kopf, Y. Yang, L. Chua, C. Chen, C.T. Liu, Y.-K. Chen. InP D-HBT ICs for 40 Gb/s and higher bitrate lightwave transceivers. IEEE J. Solid-State Circuits, 37(9):1152–1159, 2002.

    Article  Google Scholar 

  27. K. Washio, E. Ohue, K. Oda, R. Hayami, M. Tanabe, H. Shimamoto. Optimization and characteristics related to the emitter-base junction in self-aligned SEG SiGe HBTs and their application in 72-GHz-static/92-GHz-dynamic frequency dividers. IEEE Trans. Electron Devices, 49(10):1755–1760, 2002.

    Article  Google Scholar 

  28. J.P. Maligeorgos, J.R. Long. A low-voltage 5.1-5.8-GHz image-reject receiver with wide dynamic range. IEEE J. Solid-State Circuits, 35(12):1917–1926, 2000.

    Article  Google Scholar 

  29. J.R. Long. A low-voltage 5.1-5.8-GHz image-reject downconverter RF-IC. IEEE J. Solid-State Circuits, 35(9):1320–1328, 2000.

    Article  Google Scholar 

  30. B. Razavi. RF Microelectronics. Prentice Hall, Upper Saddle River, 1997.

    Google Scholar 

  31. A.A. Abidi, P.R. Gray, R.G. Meyer. Integrated Circuits for Wireless Communications. IEEE Press, New York, 1999.

    Google Scholar 

  32. H.-M. Rein, M. Möller. Design considerations for very-high-speed Si-bipolar ICs operating up to 50 Gb/s. IEEE J. Solid-State Circuits, 31(8):1076–1090, 1996.

    Article  Google Scholar 

  33. J. Duree. An integrated silicon bipolar receiver subsystem for 900-MHz ISM band applications. IEEE J. Solid-State Circuits, 33(9):1352–1372, 1998.

    Article  Google Scholar 

  34. D. Zöschg, W. Wilhelm, T.F. Meister, H. Knapp, H.-D. Wohlmuth, K. Aufingcr, M. Wurzer, J. Böck, H. Schäfer, A.L. Scholtz. 2dB noise figure, 10.5 GHz LNA using SiGe bipolar technology. Electron. Lett., 35:2195–2196, 1999.

    Article  Google Scholar 

  35. D. Zös chg, W. Wilhelm, J. Böc k, H. Knapp, M. Wurzer, K. Aufinger, H.-D. Wohlmuth. A.L. Scholtz. Monolithic LNAs up to 10 GHz in a production-near 65 GHz f max silicon bipolar technology. Proc. IEEE Radio Frequency IC Symp., pp. 135–138, 2000.

    Google Scholar 

  36. O. Shana’a, I. Linscott, L. Tyler. Frequency-scalable SiGe bipolar RF front-end design. IEEE J. Solid-State Circuits, 36(6):888–895, 2001.

    Article  Google Scholar 

  37. D. Zöschg, W. Wilhelm, T.F. Meister, H. Knapp, M. Wurzer, K. Aufinger, J. Böck, H.-D. Wohlmuth, A.L. Scholtz. Low noise amplifiers in SiGe bipolar technology. Microwave Eng. Europe, June, pp. 47–49, 2000.

    Google Scholar 

  38. W.-Z. Chen, J.-T. Wu. A 2-V 2-GHz BJT variable frequency oscillator. IEEE J. Solid-State Circuits, 33(9):1406–1410, 1998.

    Article  Google Scholar 

  39. W.-Z. Chen, J.-T. Wu. A 2-V 1.8-GHz BJT phase-locked loop. IEEE J. Solid-State Circuits, 34(6):784–789, 1999.

    Article  Google Scholar 

  40. M.A. Margarit, J. L. Tham, R.G. Meyer, M.J. Deen. A low-noise, low power VCO with automatic amplitude control for wireless applications. IEEE J. Solid-State Circuits, 34(6):761–771, 1999.

    Article  Google Scholar 

  41. K.W. Kobayashi, J.C Cowles, L.T. Tran, A. Gutierrez-Aitken, M. Nishimoto, J.H. Elliott, T.R. Block, A.K. Oki, D.C. Streit. A 44-GHz-high IP3 InP HBT MMIC amplifier for low DC power millimeter-wave receiver applications. IEEE J. Solid-State Circuits, 34(9):1188–1195, 1999.

    Article  Google Scholar 

  42. J.R. Long, M.A. Copeland, P. Schvan, R.A. Hadaway. A low-voltage silicon bipolar RF front-end for PCN receiver applications. Proc. IEEE International Solid-State Circuits Conf., pp. 140–141, 1995.

    Google Scholar 

  43. W. Simbiirger, H.-D. Wohlmuth, P. Weger, A. Heinz. A monolithic transformer coupled 5-W silicon power amplifier with 59% PAE at 0.9 GHz. IEEE J. Solid-State Circuits, 34(12):1881–1892, 1999.

    Article  Google Scholar 

  44. W. Simbürger, A. Heinz, H.-D. Wohlmuth, J. Böck, K. Aufinger, M. Rest. A monolithic 2.5 V, 1 W silicon bipolar power amplifier with 55% PAE at 1.9 GHz. IEEE MTT-S Dig., 2000:853–856, 2000.

    Google Scholar 

  45. K. Yamamoto, S. Suzuki, K. Mori, T. Asada, T. Okuda, A. Inoue, T. Miura, K. Chomei, R. Hattori, M. Yamanouchi, T. Shimura. A 3.2-V operation single-chip dual-band AlGaAs/GaAs HDT MMIC power amplifier with active feedback circuit technique. IEEE J. Solid-State Circuits, 35(8):1109–1120, 2000.

    Article  Google Scholar 

  46. H.J. de los Santos, B. Hoefflinger. Optimization and scaling of CMOS-bipolar drivers for VLSI interconnects. IEEE Trans. Electron Devices, 33(11):1722–1730, 1986.

    Article  Google Scholar 

  47. E.W. Greeneich, K.L. McLaughlin. Analysis and characterization of BiCMOS for highspeed digital logic. IEEE J. Solid-State Circuits, 23(2):558–565, 1988.

    Article  Google Scholar 

  48. G.P. Rosseel, R.W. Dutton. Influence of device parameters on the switching speed of BiCMOS buffers. IEEE J. Solid-State Circuits, 24(1):90–99, 1989.

    Article  Google Scholar 

  49. S. Zhang, T.S. Kalkur, S. Lee, D. Chen. Analysis of the switching speed of BiCMOS buffer under high current. IEEE J. Solid-State Circuits, 29(7):787–796. 1994.

    Article  Google Scholar 

  50. S. Zhang, T.S. Kalkur. Analysis of BiCMOS buffer for input voltages with finite rise time. IEEE J. Solid-State Circuits, 29(7):797–806, 1994.

    Article  Google Scholar 

  51. H. Nambu, K. Kanetani, K. Yamasaki, K. Higeta, M. Usami, M. Nishiyama, K. Ohhata, F. Arakawa, T. Kusunoki, K. Yamaguchi, A. Hotta, N. Homma. A 550-ps access 900-MHz 1-Mb ECL-CMOS SRAM. IEEE J. Solid-State Circuits, 35(8):1159–1168, 2000.

    Article  Google Scholar 

  52. B.-U. H. Klepser, M. Scholz, E. Götz. A 10-GHz SiGe BiCMOS phase-locked-loop frequency synthesizer. IEEE J. Solid-State Circuits, 37(3):328–335, 2002.

    Article  Google Scholar 

  53. H. Nii, C. Yoshino, S. Yoshitomi, K. Inoh, H. Furuya, H. Nakajima, H. Sugaya, H. Naruse, Y. Katsumata, H. Iwai. An 0.3 μrn Si epitaxial base BiCMOS technology with 37-GHz f max and 10-V BVCEO for RF telecommunications. IEEE Trans. Electron Devices, 46(4):712–721, 1999.

    Article  Google Scholar 

  54. D.L. Harame, D.C. Ahlgren, D.D. Coolbaugh, J.S. Dunn, G.G. Freeman, J.D. Gillis, R.A. Groves, G.N. Hendersen, R.A. Johnson, A.J. Joseph, S. Subbanna, A.M. Victor, K.M. Watson, C.S. Webster, P.J. Zampardi. Current status and future trends of SiGe BiCMOS technology. IEEE Trans. Electron Devices, 48(11):2575–2594, 2001.

    Article  Google Scholar 

  55. D.A. Rich, M.S. Carroll, M.R. Frei, T.G. Ivanov, M. Mastrapasqua, S. Moinian, A.S. Chen, C.A. King, E. Harris, J. de Blauwe, H.-H. Vuong, V. Archer, K. Ng. BiCMOS — technology for mixed-digital, analog and RF applications. IEEE Microwave Mag., 3(2):44–55, 2002.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Reisch, M. (2003). Applications. In: High-Frequency Bipolar Transistors. Springer Series in Advanced Microelectronics, vol 11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55900-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55900-6_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63205-1

  • Online ISBN: 978-3-642-55900-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics