Skip to main content

Semiconductor Physics Required for Bipolar-Transistor Modeling

  • Chapter
High-Frequency Bipolar Transistors

Part of the book series: Springer Series in Advanced Microelectronics ((MICROELECTR.,volume 11))

  • 571 Accesses

Abstract

The classical description of the electromagnetic field is based on Maxwell’s equations [1],

$$ \nabla \cdot D = \rho , $$
(2.1)
$$ \nabla \cdot B = 0, $$
(2.2)
$$ \nabla xE = - \partial B/\partial t, $$
(2.3)
$$ \nabla xH = J + \partial D/\partial t, $$
(2.4)

which describe the electric field E, the dielectric displacement (or electric flux density) D, the magnetic field H and the magnetic induction (or magnetic flux density) B; the vector J describes the electric current density due to moving charges, and ρ describes the charge density.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.D. Jackson. Classical Electrodynamics. Wiley, New York, 2nd edition, 1975.

    MATH  Google Scholar 

  2. J.M. Ziman. Electrons and Phonons The Theory of Transport Phenomena in Solids. Clarendon Press, Oxford. 1960.

    MATH  Google Scholar 

  3. N.W. Ashcroft, N.D. Mermin. Solid State Physics. Holt-Saimders, New York, 1976.

    Google Scholar 

  4. W. Jones, N.H. March. Theoretical Solid State Physics, Vol. 1: Perfect Lattices in Equilibrium. Dover, New York, 1973.

    Google Scholar 

  5. W. Jones, N.H. March. Theoretical Solid State Physics, Vol. 2: Non-equilibrium and Disorder. Dover. New York, 1973.

    Google Scholar 

  6. O. Madelung. Introduction to Solid State Theory. Springer, Berlin, 1978

    Google Scholar 

  7. C. Jacoboni, L. Reggiani. The Monte Carlo method for the solution of charge transport in semiconductors with applications to covalent materials. Rev. Mod. Phys., 55(3):645–705, 1983.

    Google Scholar 

  8. W. Bludau, A. Onton. Temperature dependence of the bandgap of silicon. J. Appl. Phys., 45(4):1846–1848, 1974.

    Google Scholar 

  9. R. Pässler. Comparison of different analytical descriptions of the temperature dependence of the indirect energy gap in silicon. Solid-State Electron., 39(9):1311–1319, 1996.

    Google Scholar 

  10. C.D. Thurmond. The standard thermodynamic function of the formation of elections and holes in Ge, Si, GaAs and GaP. J. Electrochem,. Soc., 122:1133, 1975.

    Google Scholar 

  11. A.B. Sproul, M.A. Green, J. Zhao. Improved value for the silicon intrinsic carrier concentration at 300 K. Appl. Phys. Lett., 57(3):255–257, 1990.

    Google Scholar 

  12. R. Vankemmel, W. Schoenmaker, K. de Meyer. A unified wide temperature range model for the energy gap, the effective carrier mass and intrinsic concentration in silicon. Solid-State Electron., 36(10):1379–1384. 1993.

    Google Scholar 

  13. M.A. Green. Intrinsic concentration, effective densities of states, and effective mass in silicon. J. Appl. Phys., 67(6):2944–2954. 1990.

    Google Scholar 

  14. A.H. Marshak, M.A. Shibib, J.G. Fossum, F.A. Lindholm. Rigid band analysis of heavily doped semiconductor devices. IEEE Trans. Electron Devices, 28(3):293–298, 1981.

    Google Scholar 

  15. K. Seeger. Semiconductor Physics. 3rd edn, Springer, Berlin, 1985.

    Google Scholar 

  16. W. Kohn, J.M. Luttinger. Quantum theory of electrical transport phenomena. Phys. Rev., 108(3):590–611, 1972.

    MathSciNet  Google Scholar 

  17. W. Hänsch. The Drift-Diffusion Equation and its Applications in MOSFET Modeling. Springer, New York, 1991.

    Google Scholar 

  18. A. Abramo et al. A comparison of numerical solutions of the Boltzmann transport equation for high-energy electron transport silicon. IEEE Trans. Electron Devices, 41(9):1646–1654, 1994.

    Google Scholar 

  19. M. Lundstrom. Fundamentals of Carrier Transport Modular Series on Solid State Devices, Vol. X. Addison-Wesley, Reading, Massachusetts, 1990.

    Google Scholar 

  20. R. Stratton. Semiconductor current-flow equations (diffusion and degeneracy). IEEE Trans. Electron Devices, 19(12):1288–1292, 1972.

    Google Scholar 

  21. A.H. Marshak, K.M. van Vliet. Electrical current in solids with position-dependent band structure. Solid-State Electron., 21:417–427, 1978.

    Google Scholar 

  22. U. Lindefelt. Heat generation in semiconductor devices. J. Appl. Phys., 75(2):942–957, 1994.

    Google Scholar 

  23. W. Quade, E. Schöl l. M. Rudan. Impact ionization within the hydrodynamic approach to semiconductor transport. Solid-State Electron., 36(10):1493–1505, 1993.

    Google Scholar 

  24. K. Souissi, F. Odch, H.H.K. Tang, A. Gnudi, P.-F. Lu. Investigation of the impact ionization in the hydrodynamic model. IEEE Trans. Electron Devices, 40(8):1501–1507, 1993.

    Google Scholar 

  25. R. Thoma, A. Edmunds, B. Meinerzhagen, H.-J. Peifer, W.L. Engl. Hydrodynamic equations for semiconductors with nonparabolic band structure. IEEE Trans. Electron Devices, 38(6):1343–1353, 1991.

    Google Scholar 

  26. T.J. Bordelon, X.-L. Wang, C.M. Maziar, A.F. Tasch. Accounting for bandstructure effects in the hydrodynamic model: a first-order approach for silicon device simulation. Solid-State Electron., 35(2):131–139, 1992.

    Google Scholar 

  27. M.C. Vccchi, L.G. Rcyna. Generalized energy transport models for semiconductor device simulation. Solid-State Electron., 37(10):1705–1716, 1994.

    Google Scholar 

  28. K. Blotekjaer. Transport equations for electrons in two-valley semiconductors. IEEE Trans. Electron Devices, 17(1):38–47, 1970.

    Google Scholar 

  29. R.A. Stewart, L. Ye, J.X. Churchill. Improved relaxation-time formulation of collision terms for two-band hydrodynamic models. Solid-State Electron., 32:497–502, 1989.

    Google Scholar 

  30. J. Jyegal, T.A. Demassa. Correct and rigorous single-electron gas hydrodynamic transport model for multi-valley semiconductors. Solid-State Electron., 37(9):1603–1609, 1994.

    Google Scholar 

  31. D.L. Woolard, H. Tian, M.A. Littlejohn, K.W. Kim, R.J. Trew, M.K. Ieong, T.W. Tang. Construction of higher-moment terms in the hydrodynamic electron-transport model. J. Appl. Phys., 74(10):6197–6207, 1993.

    Google Scholar 

  32. T.-W. Tang, S. Ramaswamy, J. Nam. An improved hydrodynamic transport model for silicon. IEEE Trans. Electron Devices, 40(8):1469–1477, 1993.

    Google Scholar 

  33. A.M. Anile, O. Muscato. Improved hydrodynamical model for carrier transport in semiconductors. Phys. Rev. B, 51(23):16728–16740, 1995.

    Google Scholar 

  34. M.A. Stettler, M.A. Alam, M.S. Lundstrom. A critical examination of the assumptions underlying macroscopic transport equations for silicon devices. IEEE Trans. Electron Devices, 40(4):733–740, 1993.

    Google Scholar 

  35. A. Forghieri, R. Guerreri, P. Ciampolini, A. Gnudi, M. Rudan, G. Baccarani. A new discretization strategy of the semiconductor equations comprising momentum and energy balance. IEEE Trans. CAD, 7(2):231–242, 1988.

    Google Scholar 

  36. S.-C. Lee, T.-W. Tang. Transport coefficients for a silicon hydrodynamic model extracted from inhomogencous Monte-Carlo calculations. Solid-State Electron., 35(4):561–569, 1992.

    MathSciNet  Google Scholar 

  37. R.O. Grondin, S.M. El-Ghazaly, S. Goodnick. A review of global modeling of charge transport in semiconductors and full-wave electromagnetics. IEEE Trans. Microwave Theory Tech., 47(6):817–829, 1999.

    Google Scholar 

  38. W. Hacnsch, M. Miura-Mattausch. The hot-clcctron problem in small semiconductor devices. J. Appl. Phys., 60(2):650–656, 1986.

    Google Scholar 

  39. R.N. Hall. Electron-hole recombination in germanium. Phys. Rev., 87:387, 1952.

    Google Scholar 

  40. W. Shockley, W.T. Read. Statistics of the recombination of holes and electrons. Phys. Rev., 87:835–842, 1952.

    MATH  Google Scholar 

  41. C.-T. Sah, R.N. Xoyce, W. Shockley. Carrier generation and recombination in p-n junctions and p-n junction characteristics. Proc. IRE, 45:1228–1243, 1957.

    Google Scholar 

  42. C.-T. Sah, F.A. Lindholm. Carrier generation, recombination, trapping, and transport in semiconductors with position-dependent composition. IEEE Trans. Electron Devices, 24(4):358–362, 1977.

    Google Scholar 

  43. W.D. Eades, R.W. Swanson. Calculation of surface generation and recombination velocities at the Si-SiO2 interface. J. Appl. Phys., 58(11):4267–4276, 1985.

    Google Scholar 

  44. D.K. Schroder. Carrier lifetimes in silicon. IEEE Trans. Electron Devices, 44(1):160–170, 1997.

    Google Scholar 

  45. A. Schrenk. A model for the field and temperature dependence of Shockley-Read-Hall lifetimes in silicon. Solid-State Electron., 35(11):1585–1596, 1992.

    Google Scholar 

  46. G. Vincent, A. Chantre, D. Bois. Electric field effect on the thermal emission of traps in semiconductor junctions. J. Appl. Phys., 50(8):5484–5487, 1979.

    Google Scholar 

  47. G.A.M. Hurkx, D.B.M. Klaassen, M.P.G. Knuvers. A new recombination model for device simulation including tunneling. IEEE Trans. Electron Devices, 39(2):331–338, 1992.

    Google Scholar 

  48. O.K.B. Lui, P. Migliorato. A new generation-recombination model for device simulation including the Poole-Frenkel effect and phonon-assisted tunneling. Solid-State Electron., 41(4):575–583, 1997.

    Google Scholar 

  49. J. Dziewior, W. Schmid. Auger coefficients for highly-doped and highly excited silicon. Appl. Phys. Lett., 31(5):346–348, 1977.

    Google Scholar 

  50. K.G. McKay. Avalanche breakdown in silicon. Phys. Rev., 94(4):877–884, 1954.

    Google Scholar 

  51. S.L. Miller. Avalanche breakdown in germanium. Phys. Rev., 99(4):1234–1241, 1955.

    Google Scholar 

  52. S.L. Miller. Ionization rates for holes and electrons in silicon. Phys. Rev., 105(4):1246–1249, 1957.

    Google Scholar 

  53. C.A. Lee, R.A. Logan, R.L. Batdorf, J.J. Kleimack, W. Wiegmann. Ionization rates of holes and electrons in silicon. Phys. Rev., 134(3A):A761–A773, 1964.

    Google Scholar 

  54. A.G. Chynoweth. Ionization rates for electrons and holes in silicon. Phys. Rev., 109(5):1537–1540, 1958.

    Google Scholar 

  55. A. Schütz, S. Selberherr, H.W. Pötzl. A two-dimensional model of the avalanche effect in MOS transistors. Solid-State Electron., 25:177–183, 1982.

    Google Scholar 

  56. J.L. Moll, R. van Overstraeten. Charge multiplication in silicon pn junctions. Solid-State Electron., 6:147–157, 1963.

    Google Scholar 

  57. T. Ogawa. Avalanche breakdown and multiplication in silicon pin junctions. Jpn. J. Appl. Phys., 4(7):473–484, 1965.

    Google Scholar 

  58. R. van Overstraeten, H. de Man. Measurement of the ionization rates in diffused silicon pn junctions. Solid-State Electron., 13:583–608, 1970.

    Google Scholar 

  59. W.N. Grant. Electron and hole ionization rates in epitaxial silicon at high electric fields. Solid-State Electron., 16:1189–1203, 1973.

    MathSciNet  Google Scholar 

  60. G.A. Baraff. Distribution functions and ionization rates for hot electrons in semiconductors. Phys. Rev., 128(6):2507–2517, 1962.

    MATH  Google Scholar 

  61. W. Shockley. Problems related to p-n junctions in silicon. Solid-State Electron., 2(1):35–67, 1961.

    Google Scholar 

  62. J.J. Moll. N.I. Meyer. Secondary multiplication in silicon. Solid-State Electron., 3:155–158, 1961.

    Google Scholar 

  63. J.L. Moll. Physics of Semiconductors. McGraw-Hill, New York, 1964.

    MATH  Google Scholar 

  64. E.O. Kane. Electron scattering by pair production in silicon. Phys. Rev., 159(3):624–631, 1967.

    Google Scholar 

  65. C.L. Anderson, C.R. Crowell. Threshold energies for electron-hole pair production by impact ionization in semiconductors. Phys. Rev. B, 5(6):2267–2272, 1972.

    Google Scholar 

  66. V.M. Robbins, T. Wang, K.F. Brennan, K. Hess, G.E. Stillman. Electron and hole impact ionization coefficients in (100) and (111) Si. J. Appl. Phys., 58(12):4614–4617, 1985.

    Google Scholar 

  67. Y. Okuto, C.R. Crowell. Ionization coefficients in semiconductors: a nonlocalized property. Phys. Rev. B, 10(10):4284–4296, 1974.

    Google Scholar 

  68. Y. Okuto, C.R. Crowell. Threshold energy effect on avalanche breakdown voltage in semiconductor junctions. Solid-State Electron., 18:161–168, 1975.

    Google Scholar 

  69. L.V. Keldysh. Concerning the theory of impact ionization in semiconductors. Sov. Phys. JETP, 21(6):1135–1144, 1965.

    MathSciNet  Google Scholar 

  70. Z.S. Gribnikov, V.M. Ivastchenko, V.V. Mitin. Nonlocality of carrier multiplication in semiconductor depletion layers. Phys. Status Solidi B, 105:451–459, 1981.

    Google Scholar 

  71. R.J. McIntyre. A new look at impact ionization part i: a theory of gain, noise, breakdown, probability, and frequency response. IEEE Trans. Electron Devices, 46(8):1623–1631, 1999.

    Google Scholar 

  72. R.J. Mclntyre. A new look at impact ionization — part ii: gain and noise in short avalanche photodiodes. IEEE Trans. Electron Devices, 46(8):1632–1639, 1999.

    Google Scholar 

  73. E.F. Crabbe, J.M.C. Stork, G. Baccarani, M.V. Fischetti, S.E. Laux. The impact of non-equilibrium transport on breakdown and transit time in bipolar transistors. IEDM Tech. Dig., pp. 463-466, 1990.

    Google Scholar 

  74. J.W. Slotboom, G. Streutker, M.J.V. Dort, P.H. Woerlee, A. Pruijmboom, D.J. Gravesteijn. Non-local impact ionization in silicon devices. IEDM Tech. Dig., pp. 127–130, 1991.

    Google Scholar 

  75. W. Lee et al. Numerical modeling of advanced semiconductor devices. IBM J. Res. Develop., 36(2):208–230, 1992.

    Google Scholar 

  76. P. Palestri, L. Selmi, G.A.M. Hurkx, J.W. Slotboom, E. Sangiorgi. Energy dependent election and hole impact ionization in Si bipolar transistors. IEDM Tech. Dig., pp. 885–888, 1998.

    Google Scholar 

  77. J.W. Slotboom, G. Streutker, G.J.T. Davids, P.B. Hartog. Surface impact ionization in silicon devices. IEDM Tech. Dig., pp. 494-497, 1987.

    Google Scholar 

  78. S.M. Sze. Physics of Semiconductor Devices. 2nd edn Wiley, New York, 1982.

    Google Scholar 

  79. C. Zener, H.H. Wills. A theory of the electrical breakdown of solid dielectrics. Proc. R. Soc., 145:523–529, 1934.

    Google Scholar 

  80. A.G. Chynoweth, K.G. McKay. Internal field emission in silicon pn junctions. Phys. Rev., 106(3):418–426, 1957.

    Google Scholar 

  81. E.O. Kane. Zener tunneling in semiconductors. J. Phys. Chern. Solids, 12:181–188, 1962.

    Google Scholar 

  82. P.J. Price, J.M. Radcliffe. Esaki tunneling. IBM J., (10):364-371, 1959.

    Google Scholar 

  83. E.O. Kane. Theory of tunneling. J. Appl. Phys., 32(1):83–91, 1961.

    MathSciNet  MATH  Google Scholar 

  84. D.R. Fredkin, G.H. Wannier. Theory of electron tunneling in semiconductor junctions. Phys. Rev., 128(5):2054–2061. 1962.

    MathSciNet  MATH  Google Scholar 

  85. R.T. Shuey. Theory of tunneling across semiconductor junctions. Phys. Rev., 137(4A):A1268–A1277, 1965.

    Google Scholar 

  86. L. Esaki, Y. Miyahara. A new device using the tunneling process in narrow pn junctions. Solid-State Electron., 1(1):13–21, 1960.

    Google Scholar 

  87. A.G. Chynoweth, D.E. Thomas, R.A. Logan. Phonon-assisted tunneling in silicon and germanium Esaki junctions. Phys. Rev., 125(3):877–881, 1962.

    Google Scholar 

  88. A. Schenk. Rigorous theory and simplified model of the band-to-band tunneling in silicon. Solid-State Electron., 36(1):19–34, 1993.

    Google Scholar 

  89. G.A.M. Hurkx. On the modelling of tunneling currents in reverse-biased p-n junctions. Solid-State Electron., 32(8):665–668, 1989.

    Google Scholar 

  90. R.P. Mertens, R.J. van Overstraeten, H.J. de Man. Heavy doping effects in silicon. Adv. Electron. Electron Phys., 55:77–118, 1981.

    Google Scholar 

  91. R.J. van Overstraeten, R.P. Mertens. Heavy doping effects in silicon. Solid-State Electron., 30(11):1077–1087, 1987.

    Google Scholar 

  92. T.N. Morgan. Broadening of impurity bands in heavily doped semiconductors. Phys. Rev., 139(1A):343–348, 1965.

    Google Scholar 

  93. D.D. Kleppinger, F.A. Lindholm. Impurity concentration dependent density of states and resulting Fermi level for silicon. Solid-State Electron., 14:407–416, 1971.

    Google Scholar 

  94. D.S. Lee, J.G. Fossum. Energy-band distortion in highly doped silicon. IEEE Trans. Electron Devices, 30(6):626–634, 1983.

    Google Scholar 

  95. E.O. Kane. Thomas-Fermi approach to impure semiconductor band structure. Phys. Rev., 131(1):79–88, 1963.

    MATH  Google Scholar 

  96. G.D. Mahan. Energy gap in Si and Ge: impurity dependence. J. Appl. Phys., 51(5):2634–2646, 1980.

    Google Scholar 

  97. K.-F. Berggren, B.E. Sernelius. Band-gap narrowing in heavily doped many-valley semiconductors. Phys. Rev. D, 24(4):1971–1986, 1981.

    Google Scholar 

  98. S.O. Jain, D.J. Roulston. A simple expression for band gap narrowing (BGN) in heavily doped Si, Ge, GaAs and GexSi1-x strained layers. Solid-State Electron., 34(5):453–465, 1991.

    Google Scholar 

  99. W.L. Kauffman, A.A. Bergh. The temperature dependence of ideal gain in double diffused silicon transistors. IEEE Trans. Electron Devices, 15(10):732–735, 1968.

    Google Scholar 

  100. H.C. de Graaff, J.W. Slotboom. Measurements of bandgap narrowing in Si bipolar transistors. Solid-State Electron., 19:857–862, 1976.

    Google Scholar 

  101. C.M. van Vliet. Bandgap narrowing and emitter efficiency in heavily doped emitter structures revisited. IEEE Trans. Electron Devices, 40(6):1140–1147, 1993.

    Google Scholar 

  102. D.B.M. Klaassen. A unified mobility model for device simulation — I. model equations and concentration dependence. Solid-State Electron., 35(7):953–959, 1992.

    Google Scholar 

  103. D.B.M. Klaassen, J.W. Slotboom, H.C. de Graaff. Unified apparent bandgap narrowing in n-and p-type silicon. Solid-State Electron., 35:125–129, 1992.

    Google Scholar 

  104. A.A. Volfson, V.K. Subashiev. Fundamental absorption edge of silicon heavily doped with donor or acceptor impurities. Sov. Phys. Semicond., 1(3):327–332, 1967.

    Google Scholar 

  105. M. Balkanski, E. Amzallag, A. Aziza. Infrared absorption in heavily doped n-type Si. Phys. Status Solidi, 31:323–330, 1969.

    Google Scholar 

  106. J. Wagner. Heavily doped silicon studied by luminescence and selective absorption. Solid-State Electron., 28(1):25–30, 1985.

    Google Scholar 

  107. S.T. Pantelides, R. Car, A. Selloni. Energy-gap reduction in heavily doped silicon: causes and consequences. Solid-State Electron., 28(1):17–24, 1985.

    Google Scholar 

  108. J. Wagner. Optical characterization of heavily doped silicon. Solid-State Electron., 30(11):1117–1120, 1987.

    Google Scholar 

  109. J. Wagner, J.A. del Alamo. Band-gap narrowing in heavily doped silicon: a comparison of optical and electrical data. J. Appl. Phys., 63(2):425–429, 1983.

    Google Scholar 

  110. W. van Roosbroeck. Theory of the flow of electrons and holes in germanium and other semiconductors. Bell Syst. Tech. J., 29:560–607, 1950.

    Google Scholar 

  111. R.J. van Overstraeten, H.J. de Man, E.P. Mertens. Transport equations in heavy doped silicon. IEEE Trans. Electron Devices, 20(3):290–298, 1973.

    Google Scholar 

  112. A.H. Marshak. Modeling semiconductor devices with position-dependent material parameters IEEE Trans. Electron Devices, 36(9):1764–1772, 1989.

    Google Scholar 

  113. G.K. Wachutka. Rigorous thermodynamic treatment of heat generation and conduction in semiconductor device modeling. IEEE Trans. CAD, 9(11):1141–1149, 1990.

    Google Scholar 

  114. S. Selberherr. Analysis and Simulation of Semiconductor Devices. Springer, Vienna, 1984.

    Google Scholar 

  115. G.D. Masetti, S. Solmi, M. Severi. Modeling of carrier mobility against concentration in arsenic-, phosphorus-and boron-doped silicon. IEEE Tra,ns. Electron Devices, 30:764–769, 1983.

    Google Scholar 

  116. D.M. Caughey, R.E. Thomas. Carrier mobilities in silicon empirically related to doping and field. Proc. IEEE, 55(12):2192–2193, 1967.

    Google Scholar 

  117. S. Reggiani, M. Valdinoci, L. Colalongo, M Rudan, G. Baccarani, A.D. Strieker, F. Illien, N. Felber, W. Fichtner, L. Zullino. Electron and hole mobility in silicon at large operating temperatures — part I: bulk mobility. IEEE Trans. Electron Devices, 49(3):490–499, 2002.

    Google Scholar 

  118. E.J. Ryder, W. Shockley. Mobilities of electrons in high electric fields. Phys. Rev., 81:139–140, 1951.

    Google Scholar 

  119. W. Shockley. Hot electrons in germanium and Ohm’s law. Bell Syst. Tech. J., 30:990–1034, 1951.

    Google Scholar 

  120. E.M. Conwell. High Field Transport in Semiconductors. Academic Press, New York, 1967.

    Google Scholar 

  121. S.A. Schwarz, S.E. Russck. Scmi-cmpirical equations for electron velocity in silicon: part I — bulk. IEEE Trans. Electron Devices, (12):1629-1633, 1983.

    Google Scholar 

  122. C. Canali, C. Jacoboni, F. Nava, G. Ottaviani, A. Alberigi-Quaranta. Electron drift velocity in silicon. Phys. Rev. B, 12(4):2265–2284, 1975.

    Google Scholar 

  123. C. Jacoboni, C. Canali, G. Ottaviani, A. Albcrigi Quaranta. A review of some charge transport properties of silicon. Solid-State Electron., 20:77–89, 1977.

    Google Scholar 

  124. H.S. Bennett. Hole and electron mobilities in heavily doped silicon: comparison of theory and experiment. Solid-State Electron., 26(12):1157–1166, 1983.

    Google Scholar 

  125. J. del Alamo et al. Simultaneous measurements of hole lifetime, hole mobility, and bandgap narrowing in heavily doped silicon. IEDM Tech. Dig., pp. 290–293, 1985.

    Google Scholar 

  126. J. del Alamo. The temperature dependence of ideal gain in double diffused silicon transistors. IEDM Tech. Dig., pp. 24-27, 1986.

    Google Scholar 

  127. C.H. Wang, K. Misiakos, A. Neugroschel. Minority-carrier transport parameters in n-type silicon. IEEE Trans. Electron Devices, 37(5):1314–1322, 1990.

    Google Scholar 

  128. C.H. Wang, K. Misiakos, A. Ncugroschcl. Temperature dependence of minority hole mobility in heavily doped silicon. Appl. Phys. Lett., 57(2):159–161, 1990.

    Google Scholar 

  129. J.M. Dorkel, P. Leturq. Carrier mobilities in silicon semi-empirically related to temperature, doping and injection level. Solid-State Electron., 24(9):821–825, 1981.

    Google Scholar 

  130. M. Rosling, H. Bleichner, P. Jonsson, E. Nordlander. The ambipolar diffusion coefficient in silicon: dependence on excess-carrier concentration and temperature. J. Appl. Phys., 76(5):2855–2859, 1994.

    Google Scholar 

  131. S. Bellone, G.V. Persiano, A.G.M. Strollo. Electrical measurement of electron and hole mobilities as a function of injection level in silicon. IEEE Trans. Electron Devices, 43(9):1459–1465, 1996.

    Google Scholar 

  132. M.E. Levinshtein, T.T. Mnatskanov. On the transport equations in popular commercial device simulators. IEEE Trans. Electron Devices, 49(4):702–703, 2002.

    Google Scholar 

  133. J.L. Egley, D. Chidambarrao. Strain effects on device characteristics: implementation in drift-diffusion simulators. Solid-State Electron., 36(12):1653–1664, 1993.

    Google Scholar 

  134. H.C. de Graaff, F.M. Klaassen. Compact Transistor Modeling for Circuit Design. Springer, Vienna, 1990.

    Google Scholar 

  135. H.K. Gummel. A self-consistent iterative scheme for one-dimensional steady state transistor calculations. IEEE Trans. Electron Devices, 11:455–465, 1964.

    Google Scholar 

  136. B.V. Gokhale. Numerical solutions for a one-dimensional silicon npn transistor. IEEE Trans. Electron Devices, 17(8):594–602, 1970.

    Google Scholar 

  137. G.D. Hachtel, R.C. Joy, J.W. Cooley. A new efficient one-dimensional analysis program for junction device modeling. Proc. IEEE, 60(1):86–98, 1972.

    Google Scholar 

  138. J.W. Slotboom. Computer-aided two-dimensional numerical analysis of a silicon npn transistor. IEEE Trans. Electron Devices, 20(8):669–679, 1973.

    Google Scholar 

  139. O. Manck, W.L. Engl. Two-dimensional computer simulation for switching a bipolar transistor out of saturation. IEEE Trans. Electron Devices, 22(6):339–347, 1975.

    Google Scholar 

  140. M. Kurata. Numerical Analysis for Semiconductor Devices. D.C. Heath, Lexington, 1982.

    Google Scholar 

  141. W.L. Engl, B. Mcincrzhagcn, H.K. Dirks. Device modeling. Proc. IEEE, 71(1):10–33, 1983.

    Google Scholar 

  142. S.P. Gaur, P.A. Habitz, Y.-J. Park, R.K. Cook, Y.-S. Huang, L.F. Wagner. Two-dimensional device simulation program: 2dp. IBM J. Res. Develop., 29(3):242–251, 1985.

    Google Scholar 

  143. R.W. Knepper, S.P. Gaur, F.-Y. Chang, G.R. Srinivasan. Advanced bipolar tranistor modeling: process and device simulation tools for today’s technology. IBM J. Res. Dev., 29(3):218–228, 1985.

    Google Scholar 

  144. T. Toyabe, H. Masude, Y. Aoki, S. Shuluri, T. Hagiwara. Three-dimensional device simulator CADDETH with highly convergent matrix solution algorithms. IEEE Trans. Electron Devices, 32(10):2038–2044, 1985.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Reisch, M. (2003). Semiconductor Physics Required for Bipolar-Transistor Modeling. In: High-Frequency Bipolar Transistors. Springer Series in Advanced Microelectronics, vol 11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55900-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55900-6_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63205-1

  • Online ISBN: 978-3-642-55900-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics