Skip to main content

Interactions Between Nucleic Acid Ions and Electrons and Photons

  • Chapter
  • First Online:
Nucleic Acids in the Gas Phase

Part of the book series: Physical Chemistry in Action ((PCIA))

  • 764 Accesses

Abstract

This chapter deals with nucleic acid ions and their interactions with electrons and photons in the gas phase based on the many different experiments that have been performed relating to this topic within the last 10 years. The fragmentation caused by electron attachment to anions is discussed, and the role of hydration is touched upon. Photoelectron spectroscopy has established the electron binding energies of mononucleotide anions, dinucleotides and larger strands. These are significantly lower than the thresholds for electron-induced electron detachment from anions. Thresholds were measured from electron scattering experiments and product ion masses from mass spectrometry. The site of electron removal is either the base or the phosphate group, and it is likely different for photodetachment and electron detachment. Work has not been limited to anions only, but cations have also been studied. Neutral reionisation of protonated nucleobases has shed light on the lifetime of the neutral intermediate species, which was found to be significantly different to that of the temporary nucleobase anion formed in collisional electron transfer to nucleotide anions. Dissociative recombination experiments involving oligonucleotide monocations have demonstrated that there are certain electron kinetic energies where the cross section for the formation of neutral species is high (resonances), and in closely related electron-capture dissociation experiments on multiply charged cations, the actual fragmentation channels were obtained. Both for oligonucleotide anions and cations, formation of radicals by loss and capture of electrons, respectively, largely governs the dissociation patterns. This is of high relevance for sequencing. Finally, gas-phase absorption spectroscopy has revealed differences in absorption between mononucleotides, single strands, double strands and quadruplexes, which is related to the electronic coupling between two or more bases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

DEA:

Dissociative electron attachment

DR:

Dissociative recombination

DSB:

Double strand break

ECD:

Electron capture dissociation

EDD:

Electron detachment dissociation

EPD:

Electron photodetachment dissociation

ETD:

Electron transfer dissociation

FTICR:

Fourier transform ion cyclotron resonance

HOMO:

Highest occupied molecular orbital

IC:

Internal conversion

SSB:

Single strand break

UV:

Ultraviolet

VDE:

Vertical detachment energy

References

  1. Clark LB (1995) Transition moments of 2’-deoxyadenosine. J Phys Chem 99:4466–4470

    Article  CAS  Google Scholar 

  2. Matsuoka Y, Nordén B (1982) Linear dichroism studies of nucleic acid bases in stretched poly(vinyl alcohol) film. Molecular orientation and electronic transition moment directions. J Phys Chem 86:1378–1386

    Article  CAS  Google Scholar 

  3. Petke JD, Maggiora GM, Christoffersen REJ (1990) Am Chem Soc 112:5452–5460

    Article  CAS  Google Scholar 

  4. Wulff DL (1963) Kinetics of thymine photodimerization in DNA. Biophys J 3:355–362

    Article  CAS  Google Scholar 

  5. Lamola AA, Eisinger J (1968) On the mechanism of thymine photodimerization. Proc Natl Acad Sci USA 59:46–51

    Article  CAS  Google Scholar 

  6. Johns HE, Pearson ML, Helleiner CW, Leblanc JC (1964) The ultraviolet photochemistry of thymidylyl-(3′→5′)-thymidine. J Mol Biol 9:503–524

    Article  CAS  Google Scholar 

  7. Crespo-Hernandez CE, Cohen B, Hare PM, Kohler B (2004) Ultrafast excited-state dynamics in nucleic acids. Chem Rev 104:1977–2019

    Article  CAS  Google Scholar 

  8. Middleton CT, de La Harpe K, Su C, Law YK, Crespo-Hernández CE, Kohler B (2009) DNA excited-state dynamics: from single bases to the double helix. Annu Rev Phys Chem 60:217–239

    Article  CAS  Google Scholar 

  9. Kohler B (2010) Nonradiative decay mechanisms in DNA model systems. J Phys Chem Lett 1:2047–2053

    Article  CAS  Google Scholar 

  10. Brøndsted Nielsen S, Andersen JU, Forster JS, Hvelplund P, Liu B, Pedersen UV, Tomita S (2003) Photodestruction of adenosine 5′-monophosphate (AMP) nucleotide ions in vacuo: statistical versus nonstatistical processes. Phys Rev Lett 91:048302

    Article  Google Scholar 

  11. Markovitsi D, Gustavsson T, Banyasz A (2010) Absorption of UV radiation by DNA: spatial and temporal features. Mutat Res 704:21–28

    Article  CAS  Google Scholar 

  12. Markovitsi D (2009) Interaction of UV radiation with DNA helices. Pure Appl Chem 81:1635–1644

    Article  CAS  Google Scholar 

  13. Markovitsi D, Gustavsson T, Vayá I (2010) Fluorescence of DNA duplexes: from model helices to natural DNA. J Phys Chem Lett 1:3271–3276

    Article  CAS  Google Scholar 

  14. Cobut V, Frongillo Y, Patau JP, Goulet T, Fraser M-J, Jay-Gerin JP (1998) Monte Carlo simulation of fast electron and proton tracks in liquid water – I. Physical and physicochemical aspects. Radiat Phys Chem 51:229–243

    Article  CAS  Google Scholar 

  15. LaVerne JA, Pimblott SM (1995) Electron-energy loss distributions in solid, dry DNA. Radiat Res 141:208–215

    Article  CAS  Google Scholar 

  16. Boudaïffa B, Cloutier P, Hunting D, Huels MA, Sanche L (2000) Resonant formation of DNA strand breaks by low-energy (3 to 20 eV) Electrons. Science 287:1658–1660

    Article  Google Scholar 

  17. Martin F, Burrow PD, Cai Z, Hunting D, Sanche L (2004) DNA strand breaks induced by 0-4 eV electrons: the role of shape resonances. Phys Rev Lett 93:068101

    Article  Google Scholar 

  18. Desfrancois C, Abdoul-Carime H, Schermann JP (1996) Electron attachment to isolated nucleic acid bases. J Chem Phys 104:7792–7794

    Article  CAS  Google Scholar 

  19. Gohlke S, Abdoul-Carime H, Illenberger E (2003) Dehydrogenation of adenine induced by slow (<3eV) electrons. Chem Phys Lett 380:595

    Article  CAS  Google Scholar 

  20. Hanel G, Gstir B, Scheier P, Probst M, Farizon B, Farizon M, Illenberger E, Märk TD (2003) Electron attachment to uracil: effective destruction at subexcitation energies. Phys Rev Lett 90:188104

    Article  CAS  Google Scholar 

  21. Denifl S, Ptasinska S, Cingel M, Matejcik S, Scheier P, Märk TD (2003) Electron attachment to the DNA bases thymine and cytosine. Chem Phys Lett 377:74–80

    Article  CAS  Google Scholar 

  22. Denifl S, Ptasinska S, Probst M, Hrusak J, Scheier P, Märk TD (2004) Electron attachment to the gas-phase DNA bases cytosine and thymine. J Phys Chem A 108:6562–6569

    Article  CAS  Google Scholar 

  23. Ptasinska S, Denifl S, Scheier P, Illenberger E, Märk TD (2005) Bond- and site-selective loss of H atoms from nucleobases by very-low-energy electrons (<3eV). Angew Chem Int Ed 44:6941–6943

    Article  CAS  Google Scholar 

  24. Abdoul-Carime H, Gohlke S, Illenberger E (2004) Site-specific dissociation of DNA bases by slow electrons at early stages of irradiation. Phys Rev Lett 92:168103

    Article  Google Scholar 

  25. Théodore M, Sobczyk M, Simons J (2006) Cleavage of thymine N3-H bonds by low-energy electrons attached to base π* orbitals. Chem Phys 329:139–147

    Article  Google Scholar 

  26. Anusiewicz I, Berdys J, Sobczyk M, Skurski P, Simons J (2004) Effects of base π-stacking on damage to DNA by low-energy electrons. J Phys Chem A 108:11381–11387

    Article  CAS  Google Scholar 

  27. Berdys J, Anusiewicz I, Skurski P, Simons J (2004) Damage to model DNA fragments from very low-energy (<1 eV) electrons. J Am Chem Soc 126:6441–6447

    Article  CAS  Google Scholar 

  28. Berdys J, Skurski P, Simons J (2004) Damage to model DNA fragments by 0.25-1.0 eV electrons attached to thymine π* orbital. J Phys Chem B 108:5800–5805

    Article  CAS  Google Scholar 

  29. Barrios R, Skurski P, Simons J (2002) Mechanism for damage to DNA by low-energy electrons. J Phys Chem B 106:7991–7994

    Article  CAS  Google Scholar 

  30. Nielsen AB, Hvelplund P, Liu B, Brøndsted Nielsen S, Tomita S (2003) Coulomb explosion upon electron attachment to a four-coordinate monoanionic metal complex. J Am Chem Soc 125:9592–9593

    Article  CAS  Google Scholar 

  31. Liu B, Hvelplund P, Brøndsted Nielsen S, Tomita S (2004) Formation of C60 2- dianions in collisions between C60 - and Na atoms. Phys Rev Lett 92:168301

    Article  Google Scholar 

  32. Liu B, Tomita S, Rangama J, Hvelplund P, Brøndsted Nielsen S (2003) Electron attachment to “naked” and microsolvated nucleotide anions: detection of long-lived dianions. ChemPhysChem 4:1341–1344

    Article  CAS  Google Scholar 

  33. Liu B, Hvelplund P, Brøndsted Nielsen S, Tomita S (2004) Hydrogen loss from nucleobase nitrogens upon electron attachment to isolated DNA and RNA nucleotide anions. J Chem Phys 121:4175–4179

    Article  CAS  Google Scholar 

  34. Ptasińska S, Denifl S, Scheier P, Märk TD (2004) Inelastic electron interaction (attachment/ionization) with deoxyribose. J Chem Phys 2004(18):8505–8511

    Article  Google Scholar 

  35. Liu B, Haag N, Johansson H, Schmidt HT, Cederquist H, Brøndsted Nielsen S, Zettergren H, Hvelplund P, Manil B, Huber BA (2008) Electron capture induced dissociation of nucleotide anions in water nanodroplets. J Chem Phys 128:075102

    Article  CAS  Google Scholar 

  36. Liu B, Brøndsted Nielsen S, Hvelplund P, Zettergren H, Cederquist H, Manil B, Huber BA (2006) Collision-induced dissociation of hydrated adenosine monophosphate nucleotide ions: protection of the ion in water nanoclusters. Phys Rev Lett 97:133401

    Article  CAS  Google Scholar 

  37. Hendricks JH, Lyapustina SA, de Clercq HL, Snodgrass JT, Bowen KH (1996) Dipole bound, nucleic acid base anions studied via negative ion photoelectron spectroscopy. J Chem Phys 104:7788–7791

    Article  CAS  Google Scholar 

  38. Hendricks JH, Lyapustina SA, de Clercq HL, Bowen KH (1998) The dipole bound-to-covalent anion transformation in uracil. J Chem Phys 108:8–11

    Article  CAS  Google Scholar 

  39. Wyer JA, Cederquist H, Haag N, Huber BA, Hvelplund P, Johansson HAB, Maisonny R, Brøndsted Nielsen S, Rangama J, Rousseau P, Schmidt HT (2009) On the hydrogen loss from protonated nucleobases after electronic excitation or collisional electron capture. Eur J Mass Spectrom 15:681–688

    Article  CAS  Google Scholar 

  40. Schultz KN, Håkansson K (2004) Rapid electron capture dissociation of mass-selectively accumulated oligodeoxynucleotide dications. Int J Mass Spectrom 234:123–130

    Article  CAS  Google Scholar 

  41. Håkansson K, Hudgins RR, Marshall AG, O’Hair RAJ (2003) Electron capture dissociation and infrared multiphoton dissociation of oligonucleotide dications. J Am Soc Mass Spectrom 14:23–41

    Article  Google Scholar 

  42. Yang J, Håkansson K (2006) Fragmentation of oligonucleotides from gas-phase ion-electron reactions. J Am Soc Mass Spectrom 17:1369–1375

    Article  CAS  Google Scholar 

  43. Yang J, Mo J, Adamson JT, Håkansson K (2005) Characterization of oligonucleotides by electron detachment dissociation Fourier transform ion cyclotron resonance mass spectrometry. Anal Chem 77:1876–1882

    Article  CAS  Google Scholar 

  44. Smith SI, Brodbelt JS (2009) Electron transfer dissociation of oligonucleotide cations. Int J Mass Spectrom 283:85–93

    Article  CAS  Google Scholar 

  45. Wah T, Chan D, Choy MF, Chan WYK, Fung YME (2009) A mechanistic study of the electron capture dissociation of oligonucleotides. J Am Soc Mass Spectrom 20:213–226

    Article  Google Scholar 

  46. Tanabe T, Starikov EB, Noda K, Saito M (2006) Resonant neutral-particle emission after collisions of electrons with base-stacked oligonucleotide cations in a storage ring. Chem Phys Lett 430:380–385

    Article  CAS  Google Scholar 

  47. Tanabe T, Starikov EB, Noda K (2008) Resonant neutral-particle emission correlated with base-base interactions in collisions of electrons with protonated and sodiated dinucleotide monocations. Chem Phys Lett 467:154–158

    Article  CAS  Google Scholar 

  48. Bluhme H, Jensen MJ, Brøndsted Nielsen S, Pedersen UV, Seiersen K, Svendsen A, Andersen LH (2004) Electron scattering on stored mononucleotide anions. Phys Rev A 70:020701

    Article  Google Scholar 

  49. Andersen JU, Hvelplund P, Brøndsted Nielsen S, Tomita S, Wahlgreen H, Møller SP, Pedersen UV, Forster JS, Jørgensen TJD (2002) The combination of an electrospray ion source and an electrostatic storage ring for lifetime and spectroscopy experiments on biomolecules. Rev Sci Instrum 73:1284–1287

    Article  CAS  Google Scholar 

  50. Tanabe T, Noda K, Syresin E (2004) An electrostatic storage ring with a merging electron beam device at KEK. Nucl Instrum Methods Phys Res A 532:105–110

    Article  CAS  Google Scholar 

  51. Tanabe T (2007) Neutral-particle emission from multiply charged biomolecular ions in collisions with electrons. J Phys Conf Ser 58:17–24

    Article  CAS  Google Scholar 

  52. Seiersen K, Bak J, Bluhme H, Jensen MJ, Brøndsted Nielsen S, Andersen LH (2003) Electron-impact detachment of O3 -, NO3 - and SO2 - ions. Phys Chem Chem Phys 5:4814–4820

    Article  CAS  Google Scholar 

  53. Andersen LH, Mathur D, Schmidt HT, Vejby-Christensen L (1995) Electron-impact detachment of D-: near-threshold behavior and the nonexistance of D2- resonances. Phys Rev Lett 74:892–895

    Article  CAS  Google Scholar 

  54. El Ghazaly MOA, Svendsen A, Bluhme H, Brøndsted Nielsen S, Andersen LH (2005) Electron scattering on p-benzoquinone anions. Chem Phys Lett 405:278–281

    Article  Google Scholar 

  55. Yang X, Wang X-B, Vorpagel ER, Wang L-S (2004) Direct experimental observation of the low ionization potentials of guanine in free oligonucleotides by using photoelectron spectroscopy. Proc Natl Acad Sci USA 101:17588–17592

    Article  CAS  Google Scholar 

  56. Svendsen A, Bluhme H, El Ghazaly MOA, Seiersen K, Brøndsted Nielsen S, Andersen LH (2005) Tuning the continuum ground state energy of NO2 2- by water molecules. Phys Rev Lett 94:223401

    Article  CAS  Google Scholar 

  57. Tanabe T, Noda K, Saito M, Starikov EB, Tateno M (2004) Regular threshold-energy increase with charge for neutral-particle emission in collisions of electrons with oligonucleotide anions. Phys Rev Lett 93:043201

    Article  CAS  Google Scholar 

  58. El Ghazaly MOA, Svendsen A, Bluhme H, Nielsen AB, Brøndsted Nielsen S, Andersen LH (2004) Electron scattering on centrosymmetric molecular dianions Pt(CN)4 2- and Pt(CN)6 2-. Phys Rev Lett 93:203201

    Article  Google Scholar 

  59. Gabelica V, Tabarin T, Antoine R, Rosu F, Compagnon I, Broyer M, De Pauw E, Dugourd P (2006) Electron photodetachment dissociation of DNA polyanions in a quadrupole ion trap mass spectrometer. Anal Chem 78:6564–6572

    Article  CAS  Google Scholar 

  60. McLuckey SA, Stephenson JL Jr, O’Hair RAJ (1997) Decompositions of odd- and even-electron anions derived from deoxy-polyadenylates. J Am Soc Mass Spectrom 8:148–154

    Article  CAS  Google Scholar 

  61. Gao Y, McLuckey SA (2013) Electron transfer followed by collision-induced dissociation (NET-CID) for generating sequence information from backbone-modified oligonucleotide anions. Rapid Commun Mass Spectrom 27:249–257

    Article  CAS  Google Scholar 

  62. Liu B, Hvelplund P, Brøndsted Nielsen S, Tomita S (2003) Electron loss and dissociation in high energy collisions between multiply charged oligonucleotide anions and noble gases. Int J Mass Spectrom 230:19–24

    Article  CAS  Google Scholar 

  63. Weber JM, Ioffe IN, Berndt KM, Loffler D, Friedrich J, Ehrler OT, Danell AS, Parks JH, Kappes MM (2004) Photoelectron spectroscopy of isolated multiply negatively charged oligonucleotides. J Am Chem Soc 126:8585–8589

    Article  CAS  Google Scholar 

  64. Vonderach M, Ehrler OT, Weis P, Kappes MM (2011) Combining ion mobility spectrometry, mass spectrometry, and photoelectron spectroscopy in a high-transmission instrument. Anal Chem 83:1108–1115

    Article  CAS  Google Scholar 

  65. Vonderach M, Ehrler OT, Matheis K, Weis P, Kappes MM (2012) Isomer-selected photoelectron spectroscopy of isolated DNA oligonucleotides: phosphate and nucleobase deprotonation at high negative charge states. J Am Chem Soc 134:7830–7841

    Article  CAS  Google Scholar 

  66. Marcum JC, Halevi A, Weber JM (2009) Photodamage to isolated mononucleotides-photodissociation spectra and fragment channels. Phys Chem Chem Phys 11:1740–1751

    Article  CAS  Google Scholar 

  67. Nielsen LM, Pedersen SØ, Kirketerp M-BS, Brøndsted Nielsen S (2012) Absorption by DNA single strands of adenine isolated in vacuo: the role of multiple chromophores. J Chem Phys 136:064302

    Article  Google Scholar 

  68. Gabelica V, Rosu F, Tabarin T, Kinet C, Antoine R, Broyer M, De Pauw E, Dugourd P (2007) Base-dependent electron photodetachment from negatively charged DNA strands upon 260-nm laser irradiation. J Am Chem Soc 129:4706–4713

    Article  CAS  Google Scholar 

  69. Rosu F, Gabelica V, De Pauw E, Antoine R, Broyer M, Dugourd P (2012) UV spectroscopy of DNA duplex and quadruplex structures in the gas phase. J Phys Chem A 116:5383–5391

    Article  CAS  Google Scholar 

  70. Nielsen LM, Hoffmann SV, Brøndsted Nielsen S (2013) Electronic coupling between photo-excited stacked bases in DNA and RNA strands with emphasis on the bright states initially populated. Photochem Photobiol Sci 12(8):1273–1285

    Article  CAS  Google Scholar 

  71. Lange AW, Herbert JM (2009) Both intra- and interstrand charge-transfer excited states in aqueous B-DNA are present at energies comparable to, or just above, the (1)pi pi* excitonic bright states. J Am Chem Soc 131:3913–3922

    Article  CAS  Google Scholar 

  72. Li L, Lubman DM (1987) Ultraviolet visible absorption-spectra of biological molecules in the gas-phase using pulsed laser-induced volatilization enhancement in a diode-array spectrophotometer. Anal Chem 59:2538–2541

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steen Brøndsted Nielsen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Brøndsted Nielsen, S. (2014). Interactions Between Nucleic Acid Ions and Electrons and Photons. In: Gabelica, V. (eds) Nucleic Acids in the Gas Phase. Physical Chemistry in Action. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54842-0_4

Download citation

Publish with us

Policies and ethics