Skip to main content

Aptamers as Molecular Smugglers

  • Chapter
  • First Online:
Chemical Biology of Nucleic Acids

Part of the book series: RNA Technologies ((RNATECHN))

  • 2767 Accesses

Abstract

Transporting therapeutics to their final destination within the body is still a challenge. For this purpose aptamers are particularly advantageous because of their ability to discriminate between different tissues or cell types. If a specific cell type or diseased tissue presents a characteristic marker like a protein, lipid, or sugar on its cell surface, aptamers can be selected that target exclusively this type of cells. The concentrated localization of an aptamer at defined tissues can also reduce the necessary dose of the therapeutic. Additionally, aptamers not only target cells specifically but are also able to carry a cargo inside the cell via receptor-mediated endocytosis for instance. After the internalization process the aptamer together with its cargo is located in vesicles inside the cell, in so-called endosomes. Receptors are normally recycled back to the cell surface or degraded and the aptamer with its cargo has to escape these vesicles to become operative. We here give a brief overview about the destiny of the internalized receptor with its cargo inside the cell, how the cargo can escape, and what type of cargos can be utilized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aarbakke J, Janka-Schaub G, Elion GB (1997) Thiopurine biology and pharmacology. Trends Pharmacol Sci 18:3–7

    CAS  PubMed  Google Scholar 

  • Abdelmohsen K, Gorospe M (2012) RNA-binding protein nucleolin in disease. RNA Biol 9:799–808

    CAS  PubMed Central  PubMed  Google Scholar 

  • Abolmaali SS, Tamaddon AM, Dinarvand R (2013) A review of therapeutic challenges and achievements of methotrexate delivery systems for treatment of cancer and rheumatoid arthritis. Cancer Chemother Pharmacol 71:1115–1130

    CAS  PubMed  Google Scholar 

  • Akabani G, Reardon DA, Coleman RE et al (2005) Dosimetry and radiographic analysis of 131I-labeled anti-tenascin 81C6 murine monoclonal antibody in newly diagnosed patients with malignant gliomas: a phase II study. J Nucl Med 46:1042–1051

    CAS  PubMed  Google Scholar 

  • Altschuler Y, Kinlough CL, Poland PA et al (2000) Clathrin-mediated endocytosis of MUC1 is modulated by its glycosylation state. Mol Biol Cell 11:819–831

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bagalkot V, Farokhzad OC, Langer R et al (2006) An aptamer-doxorubicin physical conjugate as a novel targeted drug-delivery platform. Angew Chem Int Ed 45:8149–8152

    CAS  Google Scholar 

  • Bates PJ, Laber DA, Miller DM et al (2009) Discovery and development of the G-rich oligonucleotide AS1411 as a novel treatment for cancer. Exp Mol Pathol 86:151–164

    CAS  PubMed Central  PubMed  Google Scholar 

  • Berg K, Berstad M, Prasmickaite L et al (2010) Photochemical internalization: a new tool for gene and oligonucleotide delivery. Top Curr Chem 296:251–281

    CAS  PubMed  Google Scholar 

  • Bonate PL, Arthaud L, Cantrell WR Jr et al (2006) Discovery and development of clofarabine: a nucleoside analogue for treating cancer. Nat Rev Drug Discov 5:855–863

    CAS  PubMed  Google Scholar 

  • Breaker RR (2002) Engineered allosteric ribozymes as biosensor components. Curr Opin Biotechnol 13:31–39

    CAS  PubMed  Google Scholar 

  • Brogden RN, Sorkin EM (1993) Pentostatin. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic potential in lymphoproliferative disorders. Drugs 46:652–677

    CAS  PubMed  Google Scholar 

  • Burnett JC, Rossi JJ (2012) RNA-based therapeutics: current progress and future prospects. Chem Biol 19:60–71

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cao GW, Qi ZT, Pan X et al (1998) Gene therapy for human colorectal carcinoma using human CEA promoter controlled bacterial ADP-ribosylating toxin genes: PEA and DTA gene transfer. World J Gastroenterol 4:388–391

    CAS  PubMed  Google Scholar 

  • Cao Z, Tong R, Mishra A et al (2009) Reversible cell-specific drug delivery with aptamer-functionalized liposomes. Angew Chem Int Ed 48:6494–6498

    CAS  Google Scholar 

  • Cerchia L, de Franciscis V (2010) Targeting cancer cells with nucleic acid aptamers. Trends Biotechnol 28:517–525

    CAS  PubMed  Google Scholar 

  • Cerqueira NM, Fernandes PA, Ramos MJ (2007) Understanding ribonucleotide reductase inactivation by gemcitabine. Chemistry 13:8507–8515

    CAS  PubMed  Google Scholar 

  • Chauhan VM, Burnett GR, Aylott JW (2011) Dual-fluorophore ratiometric pH nanosensor with tuneable pK(a) and extended dynamic range. Analyst 136:1799–1801

    CAS  PubMed  Google Scholar 

  • Chen CH, Dellamaggiore KR, Ouellette CP et al (2008) Aptamer-based endocytosis of a lysosomal enzyme. Proc Natl Acad Sci U S A 105:15908–15913

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chu TC, Marks JW 3rd, Lavery LA et al (2006) Aptamer:toxin conjugates that specifically target prostate tumor cells. Cancer Res 66:5989–5992

    CAS  PubMed  Google Scholar 

  • Coulie PG, Hanagiri T, Takenoyama M (2001) From tumor antigens to immunotherapy. Int J Clin Oncol 6:163–170

    CAS  PubMed  Google Scholar 

  • Daniels DA, Chen H, Hicke BJ et al (2003) A tenascin-C aptamer identified by tumor cell SELEX: systematic evolution of ligands by exponential enrichment. Proc Natl Acad Sci U S A 100:15416–15421

    CAS  PubMed Central  PubMed  Google Scholar 

  • Daniels TR, Bernabeu E, Rodriguez JA et al (2012) The transferrin receptor and the targeted delivery of therapeutic agents against cancer. Biochim Biophys Acta 1820:291–317

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dassie JP, Liu XY, Thomas GS et al (2009) Systemic administration of optimized aptamer-siRNA chimeras promotes regression of PSMA-expressing tumors. Nat Biotechnol 27:839–849

    CAS  PubMed Central  PubMed  Google Scholar 

  • Davis S, Lollo B, Freier S et al (2006) Improved targeting of miRNA with antisense oligonucleotides. Nucleic Acids Res 34:2294–2304

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dhar S, Gu FX, Langer R et al (2008a) Targeted delivery of cisplatin to prostate cancer cells by aptamer functionalized Pt(IV) prodrug-PLGA-PEG nanoparticles. Proc Natl Acad Sci U S A 105:17356–17361

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dhar S, Liu Z, Thomale J et al (2008b) Targeted single-wall carbon nanotube-mediated Pt(IV) prodrug delivery using folate as a homing device. J Am Chem Soc 130:11467–11476

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ebert MS, Neilson JR, Sharp PA (2007) MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat Methods 4:721–726

    CAS  PubMed  Google Scholar 

  • Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–822

    CAS  PubMed  Google Scholar 

  • Elliott RL, Stjernholm R, Elliott MC (1988) Preliminary evaluation of platinum transferrin (Mptc-63) as a potential nontoxic treatment for breast-cancer. Cancer Detect Prev 12:469–480

    CAS  PubMed  Google Scholar 

  • Farokhzad OC, Jon S, Khademhosseini A et al (2004) Nanoparticle-aptamer bioconjugates: a new approach for targeting prostate cancer cells. Cancer Res 64:7668–7672

    CAS  PubMed  Google Scholar 

  • Ferreira CS, Matthews CS, Missailidis S (2006) DNA aptamers that bind to MUC1 tumour marker: design and characterization of MUC1-binding single-stranded DNA aptamers. Tumour Biol 27:289–301

    CAS  PubMed  Google Scholar 

  • Ferreira CS, Cheung MC, Missailidis S et al (2009) Phototoxic aptamers selectively enter and kill epithelial cancer cells. Nucleic Acids Res 37:866–876

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gan HK, Burgess AW, Clayton AH et al (2012) Targeting of a conformationally exposed, tumor-specific epitope of EGFR as a strategy for cancer therapy. Cancer Res 72:2924–2930

    CAS  PubMed  Google Scholar 

  • Grant BD, Donaldson JG (2009) Pathways and mechanisms of endocytic recycling. Nat Rev Mol Cell Biol 10:597–608

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gruner BA, Weitman SD (1998) The folate receptor as a potential therapeutic anticancer target. Invest New Drugs 16:205–219

    CAS  PubMed  Google Scholar 

  • Gryczynski I, Gryczynski Z, Lakowicz JR et al (1999) Fluorescence spectral properties of the anticancer drug topotecan by steady-state and frequency domain fluorometry with one-photon and multi-photon excitation. Photochem Photobiol 69:421–428

    CAS  PubMed  Google Scholar 

  • Guilloux Y, Lucas S, Brichard VG et al (1996) A peptide recognized by human cytolytic T lymphocytes on HLA-A2 melanomas is encoded by an intron sequence of the N-acetylglucosaminyltransferase V gene. J Exp Med 183:1173–1183

    CAS  PubMed  Google Scholar 

  • Guo SC, Tschammer N, Mohammed S et al (2005) Specific delivery of therapeutic RNAs to cancer cells via the dimerization mechanism of phi29 motor pRNA. Hum Gene Ther 16:1097–1109

    CAS  PubMed Central  PubMed  Google Scholar 

  • Guo KT, Paul A, Schichor C et al (2008) Cell-SELEX: novel perspectives of aptamer-based therapeutics. Int J Mol Sci 9:668–678

    CAS  PubMed Central  PubMed  Google Scholar 

  • Han JY, Burgess K (2010) Fluorescent indicators for intracellular pH. Chem Rev 110:2709–2728

    CAS  PubMed  Google Scholar 

  • Herbst RS, Khuri FR (2003) Mode of action of docetaxel – a basis for combination with novel anticancer agents. Cancer Treat Rev 29:407–415

    CAS  PubMed  Google Scholar 

  • Hicke BJ, Marion C, Chang YF et al (2001) Tenascin-C aptamers are generated using tumor cells and purified protein. J Biol Chem 276:48644–48654

    CAS  PubMed  Google Scholar 

  • Hicke BJ, Stephens AW, Gould T et al (2006) Tumor targeting by an aptamer. J Nucl Med 47:668–678

    CAS  PubMed  Google Scholar 

  • Hijiya N, Barry E, Arceci RJ (2012) Clofarabine in pediatric acute leukemia: current findings and issues. Pediatr Blood Cancer 59:417–422

    PubMed  Google Scholar 

  • Huang YF, Shangguan D, Liu H et al (2009) Molecular assembly of an aptamer-drug conjugate for targeted drug delivery to tumor cells. Chembiochem 10:862–868

    CAS  PubMed Central  PubMed  Google Scholar 

  • Huotari J, Helenius A (2011) Endosome maturation. EMBO J 30:3481–3500

    CAS  PubMed Central  PubMed  Google Scholar 

  • Huynh KK, Grinstein S (2007) Regulation of vacuolar pH and its modulation by some microbial species. Microbiol Mol Biol Rev 71:452–462

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jentsch TJ (2008) CLC chloride channels and transporters: from genes to protein structure, pathology and physiology. Crit Rev Biochem Mol Biol 43:3–36

    CAS  PubMed  Google Scholar 

  • Kang HZ, O’Donoghue MB, Liu HP et al (2010) A liposome-based nanostructure for aptamer directed delivery. Chem Commun 46:249–251

    CAS  Google Scholar 

  • Karran P (2006) Thiopurines, DNA damage, DNA repair and therapy-related cancer. Br Med Bull 79–80:153–170

    PubMed  Google Scholar 

  • Katzmann DJ, Odorizzi G, Emr SD (2002) Receptor downregulation and multivesicular-body sorting. Nat Rev Mol Cell Biol 3:893–905

    CAS  PubMed  Google Scholar 

  • Khaled A, Guo SC, Li F et al (2005) Controllable self-assembly of nanoparticles for specific delivery of multiple therapeutic molecules to cancer cells using RNA nanotechnology. Nano Lett 5:1797–1808

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kowol CR, Trondl R, Arion VB et al (2010) Fluorescence properties and cellular distribution of the investigational anticancer drug Triapine (3-aminopyridine-2-carboxaldehyde thiosemicarbazone) and its zinc(II) complex. Dalton Trans 39:704–706

    CAS  PubMed  Google Scholar 

  • Kreitman RJ (2006) Immunotoxins for targeted cancer therapy. AAPS J 8:E532–E551

    CAS  PubMed Central  PubMed  Google Scholar 

  • Krutzfeldt J, Rajewsky N, Braich R et al (2005) Silencing of microRNAs in vivo with ‘antagomirs’. Nature 438:685–689

    PubMed  Google Scholar 

  • Kurzrock R, Kantarjian HM, Druker BJ et al (2003) Philadelphia chromosome-positive leukemias: from basic mechanisms to molecular therapeutics. Ann Intern Med 138:819–830

    CAS  PubMed  Google Scholar 

  • Lawe DC, Chawla A, Merithew E et al (2002) Sequential roles for phosphatidylinositol 3-phosphate and Rab5 in tethering and fusion of early endosomes via their interaction with EEA1. J Biol Chem 277:8611–8617

    CAS  PubMed  Google Scholar 

  • Leamon CP, Low PS (2005) Receptor-mediated drug delivery. In: Wang B, Siahaan T, Soltero R (eds) Drug delivery: principles and applications, Wiley series in drug discovery. Wiley, Hoboken, NJ, pp 167–187

    Google Scholar 

  • Lee BS, Fujita M, Khazenzon NM et al (2006) Polycefin, a new prototype of a multifunctional nanoconjugate based on poly(beta-L-malic acid) for drug delivery. Bioconjug Chem 17:317–326

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li JM, Han JS, Huang Y et al (1999) A novel gene delivery system targeting cells expressing VEGF receptors. Cell Res 9:11–25

    CAS  PubMed  Google Scholar 

  • Li Y, McCadden J, Ferrer F et al (2002) Prostate-specific expression of the diphtheria toxin A chain (DT-A): studies of inducibility and specificity of expression of prostate-specific antigen promoter-driven DT-A adenoviral-mediated gene transfer. Cancer Res 62:2576–2582

    CAS  PubMed  Google Scholar 

  • Li Q, Verschraegen CF, Mendoza J et al (2004) Cytotoxic activity of the recombinant anti-mesothelin immunotoxin, SS1(dsFv)PE38, towards tumor cell lines established from ascites of patients with peritoneal mesotheliomas. Anticancer Res 24:1327–1335

    CAS  PubMed  Google Scholar 

  • Li N, Larson T, Nguyen HH et al (2010) Directed evolution of gold nanoparticle delivery to cells. Chem Commun (Camb) 46:392–394

    Google Scholar 

  • Lin C, Engbersen JF (2008) Effect of chemical functionalities in poly(amido amine)s for non-viral gene transfection. J Control Release 132:267–272

    CAS  PubMed  Google Scholar 

  • Litvinov SV, Hilkens J (1993) The epithelial sialomucin, episialin, is sialylated during recycling. J Biol Chem 268:21364–21371

    CAS  PubMed  Google Scholar 

  • Liu H, Rajasekaran AK, Moy P et al (1998) Constitutive and antibody-induced internalization of prostate-specific membrane antigen. Cancer Res 58:4055–4060

    CAS  PubMed  Google Scholar 

  • Longley DB, Harkin DP, Johnston PG (2003) 5-Fluorouracil: mechanisms of action and clinical strategies. Nat Rev Cancer 3:330–338

    CAS  PubMed  Google Scholar 

  • Lupetti R, Pisarra P, Verrecchia A et al (1998) Translation of a retained intron in tyrosinase-related protein (TRP) 2 mRNA generates a new cytotoxic T lymphocyte (CTL)-defined and shared human melanoma antigen not expressed in normal cells of the melanocytic lineage. J Exp Med 188:1005–1016

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lupold SE, Hicke BJ, Lin Y et al (2002) Identification and characterization of nuclease-stabilized RNA molecules that bind human prostate cancer cells via the prostate-specific membrane antigen. Cancer Res 62:4029–4033

    CAS  PubMed  Google Scholar 

  • Maragos CM, Appell M, Lippolis V et al (2008) Use of cyclodextrins as modifiers of fluorescence in the detection of mycotoxins. Food Addit Contam 25:164–171

    CAS  Google Scholar 

  • Matayoshi ED, Wang GT, Krafft GA et al (1990) Novel fluorogenic substrates for assaying retroviral proteases by resonance energy-transfer. Science 247:954–958

    CAS  PubMed  Google Scholar 

  • Maxfield FR, McGraw TE (2004) Endocytic recycling. Nat Rev Mol Cell Biol 5:121–132

    CAS  PubMed  Google Scholar 

  • Maxfield FR, Yamashiro DJ (1987) Endosome acidification and the pathways of receptor-mediated endocytosis. Adv Exp Med Biol 225:189–198

    CAS  PubMed  Google Scholar 

  • Meyer C, Hahn U, Rentmeister A (2011) Cell-specific aptamers as emerging therapeutics. J Nucleic Acids 2011:904750

    PubMed Central  PubMed  Google Scholar 

  • Meyer C, Eydeler K, Magbanua E et al (2012) Interleukin-6 receptor specific RNA aptamers for cargo delivery into target cells. RNA Biol 9:67–80

    CAS  PubMed Central  PubMed  Google Scholar 

  • Midwood KS, Orend G (2009) The role of tenascin-C in tissue injury and tumorigenesis. J Cell Commun Signal 3:287–310

    PubMed Central  PubMed  Google Scholar 

  • Monsuez JJ, Charniot JC, Vignat N et al (2010) Cardiac side-effects of cancer chemotherapy. Int J Cardiol 144:3–15

    PubMed  Google Scholar 

  • Ng EW, Shima DT, Calias P et al (2006) Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease. Nat Rev Drug Discov 5:123–132

    CAS  PubMed  Google Scholar 

  • Packard BZ, Komoriya A (2008) Intracellular protease activation in apoptosis and cell-mediated cytotoxicity characterized by cell-permeable fluorogenic protease substrates. Cell Res 18:238–247

    CAS  PubMed  Google Scholar 

  • Patra CR, Bhattacharya R, Mukherjee P (2010) Fabrication and functional characterization of goldnanoconjugates for potential application in ovarian cancer. J Mater Chem 20:547–554

    CAS  PubMed Central  PubMed  Google Scholar 

  • Peng W, Chen J, Huang YH et al (2005) Tightly-regulated suicide gene expression kills PSA-expressing prostate tumor cells. Gene Ther 12:1573–1580

    CAS  PubMed  Google Scholar 

  • Raab-Traub N (2012) Novel mechanisms of EBV-induced oncogenesis. Curr Opin Virol 2:453–458

    CAS  PubMed  Google Scholar 

  • Raiborg C, Bache KG, Gillooly DJ et al (2002) Hrs sorts ubiquitinated proteins into clathrin-coated microdomains of early endosomes. Nat Cell Biol 4:394–398

    CAS  PubMed  Google Scholar 

  • Ray P, Cheek MA, Sharaf ML et al (2012) Aptamer-mediated delivery of chemotherapy to pancreatic cancer cells. Nucleic Acid Ther 22:295–305

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ressing ME, Sette A, Brandt RMP et al (1995) Human CTL epitopes encoded by human papillomavirus type-16 E6 and E7 identified through in-vivo and in-vitro immunogenicity studies of HLA-A*-0201-binding peptides. J Immunol 154:5934–5943

    CAS  PubMed  Google Scholar 

  • Ross JS, Sheehan CE, Fisher HAG et al (2003) Correlation of primary tumor prostate-specific membrane antigen expression with disease recurrence in prostate cancer. Clin Cancer Res 9:6357–6362

    CAS  PubMed  Google Scholar 

  • Ruckman J, Green LS, Beeson J et al (1998) 2′-Fluoropyrimidine RNA-based aptamers to the 165-amino acid form of vascular endothelial growth factor (VEGF165). Inhibition of receptor binding and VEGF-induced vascular permeability through interactions requiring the exon 7-encoded domain. J Biol Chem 273:20556–20567

    CAS  PubMed  Google Scholar 

  • Sachse M, Urbe S, Oorschot V et al (2002) Bilayered clathrin coats on endosomal vacuoles are involved in protein sorting toward lysosomes. Mol Biol Cell 13:1313–1328

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sandberg JA, Parker VP, Blanchard KS et al (2000) Pharmacokinetics and tolerability of an antiangiogenic ribozyme (ANGIOZYME) in healthy volunteers. J Clin Pharmacol 40:1462–1469

    CAS  PubMed  Google Scholar 

  • Schally AV, Nagy A (2004) Chemotherapy targeted to cancers through tumoral hormone receptors. Trends Endocrinol Metab 15:300–310

    CAS  PubMed  Google Scholar 

  • Seedorf K, Oltersdorf T, Krammer G et al (1987) Identification of early proteins of the human papilloma viruses type-16 (Hpv 16) and type-18 (Hpv 18) in cervical-carcinoma cells. EMBO J 6:139–144

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shangguan D, Li Y, Tang Z et al (2006) Aptamers evolved from live cells as effective molecular probes for cancer study. Proc Natl Acad Sci U S A 103:11838–11843

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shapira A, Benhar I (2010) Toxin-based therapeutic approaches. Toxins 2:2519–2583

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shieh YA, Yang SJ, Wei MF et al (2010) Aptamer-based tumor-targeted drug delivery for photodynamic therapy. ACS Nano 4:1433–1442

    CAS  PubMed  Google Scholar 

  • Spurgeon S, Yu M, Phillips JD et al (2009) Cladribine: not just another purine analogue? Expert Opin Investig Drugs 18:1169–1181

    CAS  PubMed  Google Scholar 

  • Stirpe F, Battelli MG (2006) Ribosome-inactivating proteins: progress and problems. Cell Mol Life Sci 63:1850–1866

    CAS  PubMed  Google Scholar 

  • Taghdisi SM, Abnous K, Mosaffa F et al (2010) Targeted delivery of daunorubicin to T-cell acute lymphoblastic leukemia by aptamer. J Drug Target 18:277–281

    CAS  PubMed  Google Scholar 

  • Tian H, Cronstein BN (2007) Understanding the mechanisms of action of methotrexate: implications for the treatment of rheumatoid arthritis. Bull NYU Hosp Jt Dis 65:168–173

    PubMed  Google Scholar 

  • Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510

    CAS  PubMed  Google Scholar 

  • Varkouhi AK, Scholte M, Storm G et al (2011) Endosomal escape pathways for delivery of biologicals. J Control Release 151:220–228

    CAS  PubMed  Google Scholar 

  • Wang AZ, Bagalkot V, Vasilliou CC et al (2008) Superparamagnetic iron oxide nanoparticle-aptamer bioconjugates for combined prostate cancer imaging and therapy. ChemMedChem 3:1311–1315

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wilcke M, Johannes L, Galli T et al (2000) Rab11 regulates the compartmentalization of early endosomes required for efficient transport from early endosomes to the trans-golgi network. J Cell Biol 151:1207–1220

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xiao Z, Shangguan D, Cao Z et al (2008) Cell-specific internalization study of an aptamer from whole cell selection. Chemistry 14:1769–1775

    CAS  PubMed  Google Scholar 

  • Zhang YF, Chen Y, Han D et al (2010) Aptamers selected by cell-SELEX for application in cancer studies. Bioanalysis 2:907–918

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhou J, Rossi JJ (2010) Aptamer-targeted cell-specific RNA interference. Silence 1:4

    PubMed Central  PubMed  Google Scholar 

  • Zhou J, Swiderski P, Li H et al (2009) Selection, characterization and application of new RNA HIV gp 120 aptamers for facile delivery of Dicer substrate siRNAs into HIV infected cells. Nucleic Acids Res 37:3094–3109

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhou J, Fang CL, Chang TJ et al (2013) A pH sensitive ratiometric fluorophore and its application for monitoring the intracellular and extracellular pHs simultaneously. J Mater Chem B 1:661–667

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Hahn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Magbanua, E., Hahn, U. (2014). Aptamers as Molecular Smugglers. In: Erdmann, V., Markiewicz, W., Barciszewski, J. (eds) Chemical Biology of Nucleic Acids. RNA Technologies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54452-1_15

Download citation

Publish with us

Policies and ethics