A Trajectory Estimation Method for Badminton Shuttlecock Utilizing Motion Blur

  • Hidehiko Shishido
  • Itaru Kitahara
  • Yoshinari Kameda
  • Yuichi Ohta
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8333)


To build a robust visual tracking method it is important to consider issues such as low observation resolution and variation in the target object’s shape. When we capture an object moving fast in a video camera motion blur is observed. This paper introduces a visual trajectory estimation method using blur characteristics in the 3D space. We acquire a movement speed vector based on the shape of a motion blur region. This method can extract both the position and speed of the moving object from an image frame, and apply them to a visual tracking process using Kalman filter. We estimated the 3D position of the object based on the information obtained from two different viewpoints as shown in figure 1. We evaluated our proposed method by the trajectory estimation of a badminton shuttlecock from video sequences of a badminton game.


Visual Object Tracking Motion Blur Kalman Filter Statistically Estimation Badminton Shuttlecock 


  1. 1.
    Gandhi, H., Collins, M., Chuang, M., Narasimhan, P.: Real–Time Tracking of Game Assets in American Football for Automated Camera Selection and Motion Capture. Procedia Engineering 2(2), 2667–2673 (2010)CrossRefGoogle Scholar
  2. 2.
    Lu, W.-L., Okuma, K., Little, J.J.: Tracking and recognizing actions of multiple hockey players using the boosted particle filter. Image and Vision Computing 27(1-2), 189–205 (2009)CrossRefGoogle Scholar
  3. 3.
    Chen, H.-T., Tien, M.-C., Chen, Y.-W., Tsai, W.-J., Lee, S.-Y.: Physics-based ball tracking and 3D trajectory reconstruction with applications to shooting location estimation in basketball video. J. Vis. Commun. Image R 20(3), 204–216 (2009)CrossRefGoogle Scholar
  4. 4.
    Chen, H.-T., Chen, H.-S., Hsiao, M.-H., Chen, Y.-W., Lee, S.-Y.: A Trajectory-Based Ball Tracking Framework with Enrichment for Broadcast Baseball Videos. In: International Computer Symposium (ICS 2006), Taiwan, vol. III, pp. 1145–1150 (December 2006)Google Scholar
  5. 5.
    Yan, F., Christmas, W., Kittler, J.: Layered Data Association Using Graph-Theoretic Formulation with Application to Tennis Ball Tracking in Monocular Sequences. IEEE Transactions on Pattern Analysis and Machine Intelligence 30(10), 1814–1830 (2008)CrossRefGoogle Scholar
  6. 6.
    Ren, J., Orwell, J., Jones, G.A., Xu, M.: Tracking the soccer ball using multiple fixed cameras. Computer Vision and Image Understanding 113(5), 633–642 (2009)CrossRefGoogle Scholar
  7. 7.
    Chen, H.-T., Tsai, W.-J., Lee, S.-Y.: Ball tracking and 3D trajectory approximation with applications to tactics analysis from single-camera volleyball sequences. Multimedia Tools and Applications 60(3), 641–667 (2012)CrossRefGoogle Scholar
  8. 8.
    Alam, F., Chowdhury, H., Theppadungporn, C., Subic, A.: Measurements of Aerodynamic Properties of Badminton Shuttlecocks. Procedia Engineering 2(2), 2487–2492 (2010)CrossRefGoogle Scholar
  9. 9.
    Jin, H., Favaro, P., Cipolla, R.: Visual Tracking in the Presence of Motion Blur. In: Computer Vision and Pattern Recognition (CVPR 2005), vol. 2, pp. 18–25 (June 2005)Google Scholar
  10. 10.
    Park, Y., Lepetit, V., Woo, W.: Handling Motion-Blur in 3D Tracking and Rendering for Augmented Reality. IEEE Transactions on Visualization and Computer Graphics (TVCG) 18(9), 1449–1459 (2012)CrossRefGoogle Scholar
  11. 11.
    Wu, Z., Hristov, N.I., Hedrick, T.L., Kunz, T.H., Betke, M.: Tracking a Large Number of Objects from Multiple Views. In: IEEE 12th International Conference on Computer Vision (ICCV 2009), pp. 1546–1553 (September-October 2009)Google Scholar
  12. 12.
    Karavasilis, V., Nikou, C., Likas, A.: Visual Tracking by Adaptive Kalman Filtering and Mean Shift. In: Konstantopoulos, S., Perantonis, S., Karkaletsis, V., Spyropoulos, C.D., Vouros, G. (eds.) SETN 2010. LNCS, vol. 6040, pp. 153–162. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  13. 13.
    Huang, C., Wu, B., Nevatia, R.: Robust Object Tracking by Hierarchical Association of Detection Responses. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part II. LNCS, vol. 5303, pp. 788–801. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  14. 14.
    Satoh, Y., Okatani, T., Deguchi, K.: A Color-based Tracking by Kalman Particle Filter. In: International Conference on Pattern Recognition (ICPR 2004), vol. 3, pp. 502–505 (August 2004)Google Scholar
  15. 15.
    Xu, X., Li, B.: Adaptive Rao-Blackwellized Particle Filter and Its Evaluation for Tracking in Surveillance. IEEE Transactions on Image Processing 16(3), 838–849 (2007)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Reilly, V., Idrees, H., Shah, M.: Detection and Tracking of Large Number of Targets in Wide Area Surveillance. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part III. LNCS, vol. 6313, pp. 186–199. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  17. 17.
    Yang, C., Duraiswami, R., Davis, L.: Fast Multiple Object Tracking via a Hierarchical Particle Filter. In: IEEE International Conference on Computer Vision (ICCV 2005), vol. 1, pp. 212–219 (October 2005)Google Scholar
  18. 18.
    Li, Y., Ai, H., Yamashita, T., Lao, S., Kawade, M.: Tracking in Low Frame Rate Video: A Cascade Particle Filter with Discriminative Observers of Different Lifespans. IEEE Transactions on Pattern Analysis and Machine Intelligence 30(10), 1728–1740 (2008)CrossRefGoogle Scholar
  19. 19.
    Wu, Y., Ling, H., Yu, J., Li, F., Mei, X., Cheng, E.: Blurred Target Tracking by Blur-driven Tracker. In: IEEE International Conference on Computer Vision (ICCV), pp. 1100–1107 (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Hidehiko Shishido
    • 1
  • Itaru Kitahara
    • 1
  • Yoshinari Kameda
    • 1
  • Yuichi Ohta
    • 1
  1. 1.University of TsukubaTsukubaJapan

Personalised recommendations