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Abstract. To build a robust visual tracking method it is important to
consider issues such as low observation resolution and variation in the
target object’s shape. When we capture an object moving fast in a video
camera motion blur is observed. This paper introduces a visual trajectory
estimation method using blur characteristics in the 3D space. We acquire
a movement speed vector based on the shape of a motion blur region.
This method can extract both the position and speed of the moving
object from an image frame, and apply them to a visual tracking process
using Kalman filter. We estimated the 3D position of the object based
on the information obtained from two different viewpoints as shown in
figure 1. We evaluated our proposed method by the trajectory estimation
of a badminton shuttlecock from video sequences of a badminton game.

Keywords: Visual Object Tracking, Motion Blur, Kalman Filter,
Statistically Estimation, Badminton Shuttlecock.

1 Introduction

The research on visual object tracking for sports-events is conducted as ap-
plication cases of computer vision and contributes to developing the tactics of
games[1-7]. Because players and balls are the tracking target of the visual track-
ing processes, a visual tracking method that can handle multiple objects with
fast and complicated movement is needed. Moreover, because a shuttlecock is a
small (approximately 7cm) item, objects inside the video frame are observed in
low resolution. For example, when we capture the game with a general-use video
camera, the observation size in a frame might be just about a few pixels.

In this paper, we focus on a badminton shuttlecock as the tracking target since
it has the cited problems conspicuously. A shuttlecock is composed of feathers
of birds such as waterfowls, attached to the hemispheric cork with adhesive.
Since it is much more lightweight than balls used for other games, attaching a
transmitter or a marker for position sensing might be difficult. Such attachment
would represent extra weight in the object causing trajectory changes. Thus, the
tracking method using visual information is expected to be a promising solution
to extract the trajectories.
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Fig. 1. The estimate result of the proposed method using a video sequence of a bad-
minton game. (2 trajectories)

However, there is an additional problem to track the shuttlecock. Due to its
structure, during the badminton game (rally) the moving velocity changes incon-
sistently and drastically during each rally due to the air resistance [8]. In order
to solve the problem, we develop a tracking method that can get extractable in-
formation of the object motion depending on the motion speed. When an object
moves with low velocity for the shutter-speed of a video camera, there is little
motion blur in each frame and it is possible to estimate its accurate position.
On the other hand, it is difficult to estimate the accurate position, when the
shuttlecock moves fast because the motion blur occurs on one frame. In this
case, however, we can estimate the velocity information by analyzing the shape
of the motion blur region.

We utilize information provided by motion blur, and we propose a visual
tracking method for an object that has variously and drastically changes its
moving velocity. A summary of this method is shown in figure 2. Our method
defines the shuttle’s state by referring the velocity, for not only specifying the
color class, but also switching the input information to Kalman filter. When
the velocity is low, we observe only the position and estimate the velocity as
the difference. At high velocity, we observe the only velocity, and estimate the
position by integrating the velocity values. When the velocity is middle, we
observe both of the position and velocity.

2 Related Work

Recently, several visual object tracking methods are actively developed using
physical or probabilistic movement model. For example, Yang et. al.proposes a
visual tracking method applying color and gradient orientation histogram fea-
tures using a particle filter [17]. Another strategy applying Haar-like features and
gradual adaboost through particle filter is proposed by Li et. al [18]. Vasileios
et. al. improved the visual tracking precision by updating two observation points
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Fig. 2. A visual tracking method of an object that has variously and drastically changes
its moving velocity by utilizing the motion blur. Because the observation precision of
the position is high when the velocity is slow, we input to a Kalman filter “position
(Observation position)” and “distance between the observed positions in the former
and present frame (Observation velocity)”. When the velocity is fast, we input to
the Kalman filter “observed velocity (Observation velocity)” and “estimated position
(Observation position)”.

dynamically (1. An observation point calculated using only the Mean Shift in
the observation point of the Kalman filter; 2. An observation point calculated
from Mean Shift and the estimate point of the Kalman filter) [12]. Chang et
al. separate into three the tracking level depending on the target sequence and
proposes a visual tracking method inputting to the Kalman filter an observation
value calculated per level [13]. Furthermore, recently, a visual tracking method
that used a particle filter together with Kalman filter was studied. Satoh et. al.
reduce the number of the particles in comparison with previous studies by using
Kalman filter together in simple tracking method based on the information of
the color, and succeed in the object tracking [14]. Xu et. al. use Kalman filter
analytically and update the particles [15]. This way, the effectiveness of using
a particle filter based on the probabilistic model together with the Kalman fil-
ter based on the physical motion model is appropriately shown. We follow this
approach to improve the tracking accuracy. The motion of a shuttlecock can be
expressed with a simple dynamics model and irregular motions due to turns or
air resistance can be included using a probabilistic model.

If we insist on tracking the object just in the 2D image space, it becomes
difficult when the target object is not observed in an image frame by occlusion.
An effective solution is using images from multiple viewpoints [11, 16]. In our
approach, we also capture the target object by using at least two video cameras,
and reconstruct the motion model in 3D space.

Usually, motion blur is regarded as a source of the observation error that
reduces the accuracy of tracking process. On the other hand, there are studies
that improve the accuracy by estimating motion blur from observing every frame
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Fig. 3. Examples of the appearance of a badminton shuttlecock with motion blur
(4pixels – 35pixels)

[9, 10, 19]. However, they do not directly use the motion blur as a source of object
tracking, but restore the blurred image before the tracking process. Figure 3
shows how a fast moving object’s position estimation accuracy will generally
decrease because of the motion blur. However we understood that the velocity
of the object could be directly estimated from the shape of the motion blur
region.

3 Badminton Shuttlecock Tracking Method Using
Motion Blur

In this paper, we tackle some issues of visual object tracking. First of all, the
target object (shuttlecock) moves very fast. Second, the observed size of the
shuttlecock is small. And third, the moving velocity changes inconsistently and
drastically during each rally.

For the first issue, we propose a tracking method to estimate the moving veloc-
ity from the shape of the motion blur region. For the second issue, we renounce to
calculate the likelihood from texture information such as gradient, and instead
use the color information. Color information is affected by the environmental
conditions such as lighting change and background color. So we generate a prob-
ability model of the observed shuttlecock’s color to absorb the fluctuation. In the
case of the third issue, we develop a tracking method that switches the estimat-
ing method depending on the velocity. When the velocity is slow, we input into
Kalman filter the current observed position and as observed velocity, we input
the distance between the positions observed in the former and present frames.
When the velocity is fast, we input into Kalman filter the observed position and
the observed velocity estimated by the shape of the motion blur.

3.1 The Detection of a Moving Object Region

At the beginning of the object tracking or after having lost sight of the shut-
tlecock, we detect the shuttlecock by the following processes. At first, moving
object candidate regions are extracted by background subtraction processing. In
this process player regions are excluded by referring to the player region size.
In addition, we mask out the region such as a court-line and the net in where
it is difficult to accurately perform the segmentation processing due to the high
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Fig. 4. (a) Masked out region for shuttlecock candidate. (b) Shuttlecock detection by
using background subtraction method and the estimation of the 3D position.

brightness level. As shown in figure 4, we execute these processes in the frames
captured from two viewpoints, and calculate the 3D position of the shuttlecock
by stereo-vision. The 3D position of the shuttlecock is the observed position for
Kalman filter.

3.2 Construction of the Kalman Filter

A 3D position, velocity, and acceleration are used for the state of the shuttlecock
in the frame k.

Xk = {xk,ẋk,ẍk,yk,ẏk,ÿk,zk,żk,z̈k} (1)

The state model of the Kalman filter is denoted by the Equation (2).

Xk = AXk−1 +Buk + ωk (2)

Here, A is a state transition matrix, and the movement of the shuttlecock
forms a parabola with the air resistance,

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 δt 0 0 0 0 0 0 0
0 1 δt 0 0 0 0 0 0
0 −c

m δt 0 0 0 0 0 0 0
0 0 0 1 δt 0 0 0 0
0 0 0 0 1 δt 0 0 0
0 0 0 0 −c

m δt 0 0 0 0
0 0 0 0 0 0 1 δt 0
0 0 0 0 0 0 0 1 δt
0 0 0 0 0 0 0 −c

m δt 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, B =

⎡
⎢⎢⎢⎣

0 · · · 0 0
...
. . .

...
...

0 · · · 0 0
0 · · · 0 −g

⎤
⎥⎥⎥⎦ (3)

δt is the time lag between two frames. Buk is a control input concerning a state
transition. m is mass and c expresses the amount of air resistance. Since the
acceleration due to gravity g applied in the direction of z is not included in the
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state transition matrix of A, The matrixB is defined including this consideration.
On the other hand, in the frame k, when the estimated 3D position of the
shuttlecock is made into zk, an observation model is expressed by the Equation
(4),(5).

zk = ĤkXk + εk (4)

Ĥk =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

px 0 0 0 0 0 0 0 0
0 vx 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 py 0 0 0 0 0
0 0 0 0 vy 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 pz 0 0
0 0 0 0 0 0 0 vz 0
0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5)

Ĥk =

{
pbackground−diff , vinterframe (if LowSpeed)
pparticle−center , vblur (if HighSpeed)

p : position, v : velocity

An observation model defines a position and velocity. εk is the random noise
which occurs at the time of observation. The observation noise is a variance ma-
trix computed from the observation error of the observation trajectory acquired
manually and a trajectory without observation noise. According to the velocity
gained by a process explained later ahead in this paper, the observation model
Ĥk according to the object’s velocity is obtained by choosing the observation
information given to a Kalman filter.

3.3 Likelihood Calculation Using the Information of the Color

We calculate the likelihood of the tracked object using the information of the
color. Figure 5(a) shows the distribution of the illuminance value in the ob-
served badminton shuttlecock regions. The illuminance level of the shuttlecock
is affected by the movement blur. Furthermore, the color of the shuttlecock looks
mixed with the color of the background. Therefore, we divide the scenery of the
badminton frame in two regions: the background and the court itself.

The influence of the movement blurring has a linear relation with velocity.
Therefore, we classify the distribution into three classes (“fast” “middle velocity”
“slow”), and we decide a likelihood model corresponding to each velocity. As
clustering method, we employee k-means algorithm. As shown in Figure 5(a), the
illuminance value of the shuttlecock observed in the court region and outside the
court region are well segmented into two clusters. Figure 5(b) and (c) show the
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clustered results of the shuttlecock illuminance observed in the court region and
outside the court region, respectively. In the figures, when the shuttlecock’s speed
is fast, it receives high influence from the motion blur, thus, the shuttlecock’s
color is seemingly mixed with the background color. In the figure’s RGB space it
is represented in the cyan-colored class. Similarly, when the shuttlecock is slow,
as there is little influence of the motion blur, thus, the shuttlecock’s color is
observed as its original color. In the figure, it is represented in the pink-colored
class. Finally, the middle velocity case is represented in the figure by the purple-
colored class.

We assume the distance from the center of gravity of each colored-class and the
actual shuttlecock’s color as a likelihood function, and we decide to use six kinds
of likelihood functions by the predictive position and velocity of the shuttlecock
selectively. In addition, the predictive position of the shuttlecock judges whether
the shuttlecock is observed in the court or the outside. The output formula of
likelihood function L(d) is presented in equation (6).

L(da,b) =
1√
2πσ

exp

(
− (da,b)

2

2σ2

)
(6)

Likelihood function L(d) is a function of Euclid distance d from the center of
gravity of each class. We assume that a normal distribution function becomes
variance σ2. The variance σ2 sets it in reference to sample frame group. The
likelihood function chooses L(da), if the predictive position of the shuttlecock is
the inside of the court. The outside likelihood function of the court considers is
L(db).

Fig. 5. (a)Distribution of the illuminance value of the observed badminton shuttlecock
regions. (b) Clustering of the illuminance value of the shuttlecock observed in the court
region. (c) Clustering of the illuminance value of the shuttlecock observed in the outside
court region.

3.4 Acquisition of the 3D Position and Velocity of the Object Using
Particles

Our method can statistically estimate the 3D position and velocity information
of the object by using particles as shown in figure 6. The particles are scattered
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around a 3D position predicted by Kalman filter. The initial variance is a range
(spherical) of process noise ωk. The spherical variance range is transformed into
an ellipsoid form figure 6(a) by using a velocity vector predicted by Kalman
filter. It is possible to place a particle in the range where the motion blur has
an effect by using a predictive velocity vector.

Then, the method repositions the particle as weighted by the output of the
likelihood function figure 6(b). At this point, the particles in 3D space express
the shape of the motion-blurred shuttlecock as shown in figure 6(c). The center
of gravity of all particles is the 3D position of the shuttlecocks. We can acquire a
velocity vector by analyzing the distribution of the relocation particle figure 6(d)
as equation (7). The movement velocity v of the shuttlecock in the 3D position
g is calculated dividing the length of the major axis l and the shutter-speed
(opening time) t. Here, the length l of the major axis of an ellipsoid formed by
particles is the distance that the shuttlecock moves during the shutter opening
time t of the capturing camera.

v = l/t (7)

Fig. 6. (a) Transform a spherical distribution into an ellipsoid form. (b) Likelihood
calculation, (c) Particle relocation, (d) Acquisition of a position and the velocity

3.5 Likelihood Calculation of the Position of the Former Frame

As the detection of the shuttlecock and construction of Kalman filter is im-
possible in the early frames after the shuttlecock has been hit, due to its fast
movement, the visual tracking process mentioned above does not work. We solve
this problem by rewinding the time-line, going from the initial observation frame
(i.e., the first frame that the Kalman filter works) to former frame by using only
the likelihood calculation (without Kalman filter prediction step). As shown in
figure 7, the position in time (−t) can be tentatively predicted by the motion
model of the shuttlecock described in section 3.1, and the position and velocity
can be statistically estimated by using our method described in section 3.4.

In the frames just after the shuttlecock was hit, the motion blur is too strong
to observe the position of the shuttlecock. As the result, the shuttlecock is not
found by using particle scatters as shown in figure 8(a). In this case, we set
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Fig. 7. Estimated Position in Time −tk

a straight line between the last observed position (the shuttlecock was hit in
the previous rally) and the most former position estimated by the time-rewind
approach. Next the large particle scatter region along the extracted line is created
(see Figure 8(b)). Because a lot of objects that have similar color exist in this
region, the reliability of estimated position might be low. However the estimated
position is useful for construction of the Kalman filter.

By using this approach it is possible to estimate the position of the object
with variations in sizes of the blur region.

Fig. 8. (a) Illustration then the shuttlecock is not found by the particle scatters. (b)
The large particle scatters region along the line between hit point and firstly detected
position of the shuttlecock.

4 Experiment

We evaluate the effectiveness of the proposed method by using the video se-
quences synchronously captured using two video cameras. We capture the videos
by using SONY BRC-300 cameras with 640×480 resolution, 30fps, and 1/60 sec
shutter speed. The test video sequence includes a rally of the badminton game.
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Fig. 9. The error of the position estimation across the frame

Table 1. The error reduction rate by our proposed method

prediction error
average [m]

*proposal method
error average [m]

reduction rate

Trajectory1 0.44 0.37 18%

Trajectory2 0.35 0.32 10%

Trajectory1,2average 0.40 0.34 14%

Figure 9 shows the estimation error calculated during 2 strokes. The estima-
tion error of the predicted position by Kalman filter is plotted as “ ”, and the
estimated error by the proposed method is “*”. The Error reduction rate by our
method is shown in the table 1. We can see that our method, with the motion
blur, improves the estimation results compare with the Kalman filter. However,
when the number of the observations is not sufficient the Kalman filter cannot
construct. For example the visual tracking by using Kalman filter does not work
at the frame 146-152, and 182-187.

The “ ” expresses the error of the estimated position by the time-rewind
approach. As the result, we can confirm that our method described in section
3.5 well estimates the shuttlecock position at the frame 149-152, 187. The range
of the error is approximately less than 1m. However, a visual tracking is still
difficult when the shuttlecock is not observed in the large particle scatters region
as shown at frames 146-148,182-186. Therefore, we expand the search region as
described in section 3.5, it at frames 146-148, 182-186. The “ ” expresses the
error of the estimated position by the method that expands the searching region.
By using rewinding the time-line method (denoted by “ ”) we lower the error.
The error range is approximately less than 1.5m.

5 Conclusion

In this paper, we proposed a visual object tracking and trajectory estimation
method that is robust to low observing resolution, and wide range of the variation
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of the target object velocity. The key-idea behind our method is the use of
the motion blur region characteristic for observing the moving velocity of the
target object. Furthermore, our method is capable to estimate the position of
the shuttlecock during very fast motion by rewinding the time sequence.

We conducted on experiments to confirm the effectiveness of the proposed
visual tracking and trajectory estimation method. We confirmed that the ob-
servation using the particle could improve the estimation error by about 14%
compared with the ordinary tracking method by Kalman filter (see Table 1).
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