Skip to main content

Molecular Genetic Tools for the Identification and Analysis of Drug Targets in Toxoplasma gondii

  • Chapter
Toxoplasma gondii

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 219))

  • 366 Accesses

Abstract

Chemotherapy for acute toxoplasmosis has classically relied on inhibitors of the folate metabolic pathway (Brooks et al. 1987), typically a synergistic combination of sulfonamides (inhibitors of dihydropteroate synthase, which produces folic acid) and inhibitors of dihydrofolate reductase (e.g., pyrimethamine). Unfortunately, the combination of pyrimethamine and sulfonamides has been less successful against toxoplasmic encephalitis associated with acquired immunodeficiency syndrome (AIDS) (Luft and Remington 1992). Chronic treatment must be maintained to guard against the re-emergence of parasites from latent tissue cysts, as the bradyzoite forms are insensitive to most metabolic inhibitors. Long-term sulfonamide administration often produces a severe hypersensitivity response, however, and pyrimethamine alone is usually insufficient to prevent relapse; prolonged pyrimethamine therapy may also result in bone marrow depression (Haverkos 1987; Leport et al. 1988; Tenant-Flowers et al. 1991). Moreover, reliance on chronic treatment raises the fear that drug-resistant parasites may emerge. These concerns have lent renewed impetus to the development of improved treatment protocols, the identification of novel parasiticidal agents, and studies on the metabolism of the parasite, with an eye toward more effective drug therapy (Laughon et al. 1991).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Araujo FG, Remington JS (1992) Recent advances in the search for new drugs for treatment of toxoplasmosis. Int J Antimicrob Agents 1:153–164

    Article  PubMed  CAS  Google Scholar 

  • Beckers CJ, Roos DS, Donald RG, Luft BJ, Schwab JC, Cao Y, Joiner KA (1995) Inhibition of cytoplasmic and organellar protein synthesis in Toxoplasma gondii. Implications for the target of macrolide antibiotics. J Clin Invest 95:367–376

    Article  PubMed  CAS  Google Scholar 

  • Black M, Seeber F, Soldati D, Kim K, Boothroyd JC (1995) Restriction enzyme-mediated integration elevates transformation frequency and enables cotransfection of Toxoplasma gondii. Mol Biochem Parasitol 74:55–63

    Article  PubMed  CAS  Google Scholar 

  • Bohne W, Gross U, Ferguson DJP, Heesemann J (1995) Cloning and characterization of a bradyzoite-specifically expressed gene (HSP30/BAG1) of Toxoplasma gondii, related to genes encoding small heat-shock proteins of plants. Mol Microbiol 16:1221–1230

    Article  PubMed  CAS  Google Scholar 

  • Boothroyd JC, Black M, Kim K, Pfefferkorn ER, Seeber F, Sibley LD, Soldati D (1995) Forward and reverse genetics in the study of the obligate, intracellular parasite Toxoplasma gondii. In: Adolph K (ed) Methods in Molecular Genetics. Academic, New York, pp 3–29

    Google Scholar 

  • Brooks RG, Remington JS, Luft BJ (1987) Drugs used in the treatment of toxoplasmosis. Antimicrob Agents Annu 2:297–306

    Google Scholar 

  • Cotrim PC, Garrity LK, Beverly SM (1994) Isolation of drug resistance genes in Leishmania major by transfection using a shuttle cosmid vector. Molecular Parasitology Meeting, 18–22 September 1994, Woods Hole, MA, abstract 125C

    Google Scholar 

  • Danneman B, McCutchan JA, Israelski D, Antoniskis D, and the California Collaborative Treatment Group (1992) Treatment of toxoplasmic encephalitis in patients with AIDS. A randomized trial comparing pyrimethamine plus clindamycin to pyrimethamine plus clindamycin. Ann Int Med 116:33–43

    Google Scholar 

  • Donald RGK, Roos DS (1993) Stable molecular transformation of Toxoplasma gondii: a selectable dihydrofolate reductase-thymidylate synthase marker based on drug-resistance mutations in malaria. Proc Natl Acad Sci USA 90: 11703–11707

    Article  PubMed  CAS  Google Scholar 

  • Donald RGK, Carter D, Ullman B, Roos DS (1996) Insertional tagging, cloning and expression of the Toxoplasma gondii hypoxanthine-xanthine-guanine phosphoribosyltransferase gene: use as a selectable marker for stable transfection. J Biol Chem (in press)

    Google Scholar 

  • Donald RGK, Roos DS (1994) Homologous recombination and gene replacement at the DHFR-TS locus in Toxoplasma gondii. Mol Biochem Parasitol 63:243–253

    Article  PubMed  CAS  Google Scholar 

  • Donald RGK, Roos DS (1995) Insertional mutagenesis in a protozoan parasite: Direct cloning of the uracil phosphoribosyl transferase gene from Toxoplasma gondii. Proc Natl Acad Sci USA 92:5749–5753

    Article  PubMed  CAS  Google Scholar 

  • Ellis J, Griffin H, Morrison D, Johnson AM (1993) Analysis of dinucleotide frequency and codon usage in the phylum Apicomplexa. Gene 126: 163–170

    Article  PubMed  CAS  Google Scholar 

  • Fichera ME, Bhopale MK, Roos DS (1995) In vitro assays elucidate peculiar kinetics of clindamycin action against Toxoplasma gondii. Antimicrob Agents Chemother 39: 1530–1537

    Article  PubMed  CAS  Google Scholar 

  • Haverkos HW (1987) Assessment of therapy for toxoplasma encephalitis. Am J Med 82:907–914

    Article  PubMed  CAS  Google Scholar 

  • High KP, Joiner KA, Handschumacher RE (1994) Isolation, cDNA sequences, and biochemical characterization of the major cyclosporin-binding proteins of Toxoplasma gondii. J Biol Chem 269:9105–9112

    PubMed  CAS  Google Scholar 

  • Katlama C (1991) Evaluation of the efficacy and safety of clindamycin and pyrimethamine for induction and maintenance therapy of toxoplasmic encephalitis in AIDS. Eur J Clin Microbiol Infect Dis 10: 189–191

    Article  PubMed  CAS  Google Scholar 

  • Kim K, Soldati D, Boothroyd JC (1993) Gene replacement in Toxoplasma gondii with chloramphenicol acetyltransferase as selectable marker. Science 262:911–914

    Article  PubMed  CAS  Google Scholar 

  • Laughon BE, Allaudeen HS, Becker JM, Current WL, Feinberg J, Frenkel JK, Hafner R, Hughes WT, Laughlin CA, Meyers JD, Schrager LK, Young LS (1991) Summary of the workshop on future directions in discovery and development of therapeutic agents for opportunistic infections associated with AIDS. J Infect Dis 164:244–251

    Article  PubMed  CAS  Google Scholar 

  • Leport C, Raffi F, Katlama C, Regnier B, Saimot AG, Marche C, Vedrenne C, Vilde JL (1988) Treatment of central nervous system toxoplasmosis with pyrimethamine/sulfonamide combination in 35 patients with the acquired immunodeficiency syndrome. Am J Med 84:94–100

    Article  PubMed  CAS  Google Scholar 

  • Luft BJ, Remington JS (1992) Toxoplasmic encephalitis in AIDS. Clin Infect Dis 15:211–222

    Article  PubMed  CAS  Google Scholar 

  • Mortensen R (1993) Overview of gene-targeting by homologous recombination. In: Ausubel FM (ed) Current protocols in molecular biology. Wiley, Cambridge, Chap. 9.15.1–9.15.6

    Google Scholar 

  • Parent SA, Fenimore CM, Bostian KA (1985) Vector systems for the expression, analysis and cloning of DNA sequences in S. cerevisiae. Yeast 1:83–138

    Article  PubMed  CAS  Google Scholar 

  • Parmley SF, Yang S, Harth G, Sibley LD, Sucharczuk A, Remington JS (1994) Molecular characterization of a 65-kilodalton Toxoplasma gondii antigen expressed abundantly in the matrix of tissue cysts. Mol Biochem Parasitol 66:283–296

    Article  PubMed  CAS  Google Scholar 

  • Pashley TV, Delves CJ, Hyde JE, Sims PFG (1995) Molecular cloning and sequence analysis of the Toxoplasma gondii dihydropteroate synthase gene. Molecular Parasitology Meeting, 17–21 September 1995, Woods Hole, MA abstract 442

    Google Scholar 

  • Pfefferkorn ER (1990) Cell biology of Toxoplasma gondii. In: Wyler DJ (ed) Modern parasite biology. Freeman, New York, pp 26–50

    Google Scholar 

  • Pfefferkorn ER, Borotz SE (1994) Comparison of mutants of Toxoplasma gondii selected for resistance to azithromycin, spiramycin, or clindamycin. Antimicrob Agents Chemother 38:31–37

    Article  PubMed  CAS  Google Scholar 

  • Pfefferkorn ER, Pfefferkorn LC (1979) Quantitative studies on the mutagenesis of Toxoplasma gondii. J Parasitol 65:364–370

    Article  PubMed  CAS  Google Scholar 

  • Pfefferkorn ER, Pfefferkorn LC (1980) Toxoplasma gondii: Genetic recombination between drugresistant mutants. Exp Parasitol 50:305–316

    Article  PubMed  CAS  Google Scholar 

  • Ricketts AP, Pfefferkorn ER (1993) Toxoplasma gondii: Susceptibility and development of resistance to anticoccidial drugs in vitro. Antimicrob Agents Chemother 37:2358–2363

    Article  PubMed  CAS  Google Scholar 

  • Roos DS (1993) Primary structure of the fused dihydrofolate reductase/thymidylate synthase gene of Toxoplasma gondii. J Biol Chem 268:6269–6280

    PubMed  CAS  Google Scholar 

  • Roos DS, Donald RGK, Morrissette NS, Moulton ALC (1994) Molecular tools for genetic dissection of the protozoan parasite Toxoplasma gondii. Methods Cell Biol 45:27–63

    Article  PubMed  CAS  Google Scholar 

  • Sibley LD, LeBlanc AJ, Pfefferkorn ER, Boothroyd JC (1992) Generation of a restriction fragment length polymorphism linkage map for Toxoplasma gondii. Genetics 132: 1003–1015

    PubMed  CAS  Google Scholar 

  • Sibley LD, Messina M, Niesman IR (1994) Stable DNA transformation in the obligate intracellular parasite Toxoplasma gondii by complementation of tryptophan auxotrophy. Proc Natl Acad Sci USA 91:5508–5512

    Article  PubMed  CAS  Google Scholar 

  • Soldati D, Boothroyd JC (1993) Transient transfection and expression in the obligate intracellular parasite Toxoplasma gondii. Science 260:349–352

    Article  PubMed  CAS  Google Scholar 

  • Soldati D, Boothroyd JC (1995) A selector of transcription initiation in the protozoan parasite Toxoplasma gondii. Mol Cell Biol 15:87–93

    PubMed  CAS  Google Scholar 

  • Steigbigel NH (1990) Erythromycin, lincomycin and clindamycin. In: Mandel GL, Douglas RG Jr, Bennet JE (eds) Principles and practice of infectious diseases. Churchill Livingstone, New York

    Google Scholar 

  • Stokkermans TJW, Schwartzman JD, Keenan K, Morisette NS, Tilney LG, Roos DS. Inhibition of Toxoplasma gondii replication by dinitroaniline herbicides. Exp Parasitol (in press)

    Google Scholar 

  • Tenant-Flowers M, Boyle MJ, Carey D, Marriott DJ, Harkness JL, Penny R, Cooper DA (1991) Sulfadiazine desensitization in patients with AIDS and cerebral toxoplasmosis. AIDS 5:311–315

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Roos, D.S. (1996). Molecular Genetic Tools for the Identification and Analysis of Drug Targets in Toxoplasma gondii . In: Gross, U. (eds) Toxoplasma gondii. Current Topics in Microbiology and Immunology, vol 219. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-51014-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-51014-4_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-51016-8

  • Online ISBN: 978-3-642-51014-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics