Skip to main content

Abstract

When carbon is evaporated, either by the Bradley method or by a vacuum arc, incandescent particles are observed flying from the source. As reported at the Madison meeting, from the mere fact that these particles are visible, one can deduce a lower limit to their size (1). Since then, trajectories of these particles have been photographed with a high speed motion picture camera.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Calbick, C. J.: J. appl. Physics 27, 1389 (1956).

    Article  Google Scholar 

  2. Chupka, W. A., and M. G. Inghram: J. chem. Physics 21, 1313 (1953).

    Article  ADS  Google Scholar 

  3. Chupka, W. A., and M. G. Inghram: J. physic. Chem. 59, 100 (1955).

    Article  Google Scholar 

  4. Industrial Laboratories, October 1956.

    Google Scholar 

  5. Bradley, D. E.: Nature (Lond.) 181, 875 (1958).

    Article  ADS  Google Scholar 

  6. Bradley, D. E.: Brit. J. appl. Physics 5, 65 (1954).

    Article  ADS  Google Scholar 

  7. Bassett, G. A.: A new technique for the decoration of slip and cleavage steps on the surface of ionic crystals. Philosophic. Mag. (in press).

    Google Scholar 

Literatur

  1. Knoch, M., u. H. König: Z. wiss. Mikroskop. 63, 121 (1956).

    Google Scholar 

  2. Bradley, D. E.: J. appl. Physics. 27, 1399 (1956).

    Article  ADS  Google Scholar 

  3. Grasenik, J.: Radex-Rdsch. 4/5, S. 226 (1956).

    Google Scholar 

  4. Hibi, T., K. Yada and S. Takahashi: J. Electronmicrosc. 5, (ann. ed.), 58 (1957).

    Google Scholar 

References

  1. Wilsdorf, H., and Doris Kuhlmann-Wilsdorf: Norelco Rep. 5, 9 (1958).

    Google Scholar 

  2. Heidenreich, R. D., and L. A. Matheson: J. appl. Physics 15, 423 (1944).

    Article  ADS  Google Scholar 

  3. Garrod, R. I., and J. F. Nankivell: Brit. J. appl. Physics 9, 214 (1958).

    Article  ADS  Google Scholar 

  4. Nankivell, J. F.: Brit. J. appl. Physics 4, 141 (1953).

    Article  ADS  Google Scholar 

  5. Wilsdorf, H., and J. T. Fourie: Acta Met. 4, 271 (1956).

    Article  Google Scholar 

Literatur

  1. Bradley, D. E.: Brit. J. appl. Physics 5, 65 (1954).

    Article  ADS  Google Scholar 

  2. Camuñas, A.: Anales Física y Química. Santiago de Compostela, 1957 (en prensa).

    Google Scholar 

References

  1. Calbick, C. J.: Bell System Techn. J. 30, 798 (1951).

    Google Scholar 

  2. Boersch, H.: Z. Naturforsch. 2a, 615 (1947).

    ADS  Google Scholar 

  3. Bradley, D. E.: Brit. J. appl. Physics 5, 96 (1954).

    Article  ADS  Google Scholar 

  4. Bradley, D. E.: J. Inst. Metals 83, 35 (1954/55).

    Google Scholar 

  5. Fukami, A., and H. Yotsumoto: Electron-Microscopy, Japan (in Japanese) 4, 166 (1956).

    Google Scholar 

  6. Bierlein, T. K.: US Atomic Energy Commission. HW—34390 (Declassified), January 18 (1955).

    Google Scholar 

  7. Nutting, J., and V. E. Cosslett: Inst. Metals (Lond.) Monogr. No. 8, 57 (1950).

    Google Scholar 

  8. Bierlein, T. K., J. R. Morgan and G. R. Mallett: US Atomic Energy Commission, HW-42184, REV (Unclassified), May 25 (1956).

    Google Scholar 

  9. Bierlein, T. K., and B. Mastel: Paper presented at 16 th Annual Meeting of the Electron Microscope Soc. Amer. Santa Monica, California, August 1958.

    Google Scholar 

  10. Bradley, D. E.: J. Inst. Metals 83, 35.

    Google Scholar 

  11. Nutting, J.: Proc. 1st Int. Conference Electron Microscopy, Delft, 1949.

    Google Scholar 

  12. Smith, E., and J. Nutting: Brit. J. appl. Physics 7, 214 (1956.

    Article  ADS  Google Scholar 

  13. Silcox, J.: This volume, p. 522.

    Google Scholar 

  14. Barrett, E. P., L. G. Joyner and P. P. Halenda: J. Amer. chem. Soc. 73, 373 (1951).

    Article  Google Scholar 

  15. Pitter, H. L., and L. C. Drake: Ind. Eng. Chem., Anal. Ed. 17, 782 (1945).

    Article  Google Scholar 

  16. Hall, D. M.: Brit. J. appl. Physics 8, 295 (1957).

    Article  ADS  Google Scholar 

  17. Lukyanovich, V. M., and E. A. Leontiev: Proc. First Reg. Conf. Electr. Micr. in Asia and Oceania. Tokyo 331, 1956.

    Google Scholar 

  18. Cellulose-acetobutyrate sheet, Triafol BN. A product from Farben Fabriken Bayer A. G., Leverkusen.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

W. Bargmann G. Möllenstedt H. Niehrs D. Peters E. Ruska C. Wolpers

Rights and permissions

Reprints and permissions

Copyright information

© 1960 Springer-Verlag OHG. Berlin · Göttingen · Heidelberg

About this chapter

Cite this chapter

Calbick, C.J. et al. (1960). Aufdampf- und Abdruckverfahren. In: Bargmann, W., Möllenstedt, G., Niehrs, H., Peters, D., Ruska, E., Wolpers, C. (eds) Vierter Internationaler Kongress für Elektronenmikroskopie / Fourth International Conference on Electron Microscopy / Quatrième Congrès International de Microscopie Électronique. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-49765-0_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-49765-0_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-49481-9

  • Online ISBN: 978-3-642-49765-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics