Advertisement

Tracking Objects with Rigid Body Templates: An Iterative Constrained Linear Least Squares Approach

  • Satarupa Mukherjee
  • Nilanjan Ray
  • Dipti Prasad Mukherjee
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8251)

Abstract

We formulate a novel iterative, constrained least squares technique for tracking rigid bodies. With barycentric representation of objects, we compute rigid body transformations under optical flow as iterative solutions of the optical flow constraint equation with a homogeneous, linear constraint. We show the efficacy of our method on cluttered videos.

Keywords

optical flow constrained least squares rigid body tracking 

References

  1. 1.
    Abdou, I.E., Pratt, W.K.: Quantitative design and evaluation of enhancement/thresholding edge detectors. Proc. IEEE 67, 753–763 (1979)CrossRefGoogle Scholar
  2. 2.
    Brox, T., Bruhn, A., Papenberg, N., Weickert, J.: High Accuracy Optical Flow Estimation Based on a Theory for Warping. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3024, pp. 25–36. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  3. 3.
    Drummond, T., Cipolla, R.: Real-time visual tracking of complex structures. IEEE Trans. Pattern Anal. Machine Intell. 24, 932–946 (2002)CrossRefGoogle Scholar
  4. 4.
    Fleet, D.J., Weiss, Y.: Optical Flow Estimation. In: Handbook of Mathematical Models in Computer Vision. Springer (2006)Google Scholar
  5. 5.
    Fletcher, R.: Practical Methods of Optimization. John Wiley and Sons, West Sussex (2006)Google Scholar
  6. 6.
    Golub, G.H., Van-Loan, C.F.: Constrained least squares. In: Matrix Computations. JHU Press, Baltimore (1996)Google Scholar
  7. 7.
    Irani, M.: Multi-Frame Correspondence Estimation Using Subspace Constraints. IJCV 48(3), 173–194 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Lipetit, V., Fua, T.: Monocular model based 3D tracking of rigid objects: a survey. Foundations & Trends in Comp. Graph. & Vis. 1(1), 1–89 (2005)CrossRefGoogle Scholar
  9. 9.
    Horn, B.K.P., Schunck, B.G.: Determining optical flow. AI 17, 185–203 (1981)Google Scholar
  10. 10.
    Lucas, B.D., Kanade, T.: An Iterative Image Registration Technique with an Application to Stereo Vision. IJCAI, 674–689 (1981)Google Scholar
  11. 11.
    Ray, N.: Image registration and object tracking via affine combination. In: ICAPR, pp. 175–179 (2007)Google Scholar
  12. 12.
  13. 13.

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Satarupa Mukherjee
    • 1
  • Nilanjan Ray
    • 1
  • Dipti Prasad Mukherjee
    • 2
  1. 1.Department of Computing ScienceUniversity of AlbertaEdmontonCanada
  2. 2.Electronics and Communication Sciences UnitIndian Statistical InstituteKolkataIndia

Personalised recommendations