
Tracking Objects with Rigid Body Templates:

An Iterative Constrained Linear Least
Squares Approach

Satarupa Mukherjee1, Nilanjan Ray1, and Dipti Prasad Mukherjee2

1 Department of Computing Science
University of Alberta, Edmonton, T6G2E8, AB, Canada

2 Electronics and Communication Sciences Unit
Indian Statistical Institute, Kolkata

{satarupa,nray1}@ualberta.ca, dipti@isical.ac.in

Abstract. We formulate a novel iterative, constrained least squares
technique for tracking rigid bodies. With barycentric representation of
objects, we compute rigid body transformations under optical flow as
iterative solutions of the optical flow constraint equation with a homoge-
neous, linear constraint. We show the efficacy of our method on cluttered
videos.
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1 Introduction

Rigid body tracking has many applications in image analysis. These include
visual servoing of robotic arms, traffic monitoring and also medical imaging.
There are different techniques available in the literature for rigid body tracking
[3,8]. For rigid body tracking from a video, a popular approach is a two-step
process [3,8]. The first step detects features or computes motion vectors. Various
point features (e.g., corners), or structural features (e.g., edges) can be computed
for this purpose. For motion vector computation, a common choice is optical
flow. In the second step, a template is fitted to the features or motion vectors.
A widely used mathematical tool for the second step is the linear least squares
technique [8].

In this paper, we focus on rigid body tracking with the use of optical flow.
There are different methods of optical flow computations available to date
[2,9,10]. One significant disadvantage of these methods is that they lack prior
motion information (e.g., rigid body motion). Thus, when used in tracking, these
methods create a two-step pipeline, as mentioned earlier. The inherent difficulty
with the family of two-step methods here is that parameters of the optical flow
computation must be tuned properly to obtain meaningful tracking.

We propose a novel iterative and constrained linear least squares approach
for tracking objects with rigid body motion. The principal and practical ad-
vantages of our method are that unlike the two-step tracking methods, there is
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no user tuning parameter in our technique and it is fast. Also, our method is
able to handle partial occlusions because of the rigid body motion constraint. In
our proposed method, the object template is represented in an affine coordinate
system (also known as barycentric representation). Then, we solve optical flow
constraint equation with rigid body constraints. The affine coordinate represen-
tation of the object allows us to map this problem to an iterative, constrained
linear least squares approach. Thus, the process is a one-step process, and we
never explicitly compute optical flow. The computation only involves solving
linear equations with homogeneous linear constraints. So, standard least squares
solvers are applicable here. As a challenging application, a publicly available
surgical tool video [12] has been considered, where the surgical tool is to be
tracked in a cluttered environment. The proposed method has been compared
with another one-step optical flow based method using subspace constraint [7],
a two-step optical flow method [2] and also with the exhaustive search method.
It is observed that the proposed method and the exhaustive search method are
most consistent in tracking the tool throughout the video sequences, whereas the
other two methods failed to track the tool when it underwent sudden large mo-
tions. The record of the running times of all the methods show that the proposed
method is an order of magnitude faster than its competitors. Our algorithm is
also tested on six different vehicle videos having clutter and partial occlusions.

2 Optical Flow and Two-Step Tracking

The motion between two image frames is calculated using the optical flow method
described as follows. A pixel at location (x, y, t) with intensity I(x, y, t) is as-
sumed to move by δx, δy within a small time period δt between the two image
frames. As the image intensity of the pixel is assumed to remain constant, it can
be written as [4]:

I(x, y, t) = I(x+ δx, y + δy, t+ δt). (1)

The movement of the pixel is assumed to be small. So, expanding the right hand
side of (1) with Taylor series, we obtain:

Ixẋ+ Iy ẏ = −It, (2)

where ẋ and ẏ are respectively the horizontal and the vertical velocities at pixel
location (x, y); Ix, Iy and It are respectively the derivatives of the image in x, y
and time directions. This is an equation with two unknown variables ẋ and ẏ.
Hence, it is an underdetermined system. This is known as the “aperture prob-
lem.” Optical flow methods usually solve this problem by different regularization
techniques, such as adding equations arising out of the assumptions about the
smoothness of the flow.

The first step of a two-step tracking procedure computes optical flow in the
region of interest typically using smoothness of the flow along with equation (2).
We denote by (ui, vi) the displacement vector computed by optical flow at the
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ith pixel location. In the second step, rigid body motion of an object template
is computed using the displacement vectors (ui, vi). Let (xi, yi) denote the ith

pixel coordinates in the object template. In order to compute the parameters of
the rigid body motion, centering is applied first:

x̄ =
1

N

N∑

i=1

xi, ȳ =
1

N

N∑

i=1

yi, pi = xi − x̄, qi = yi − ȳ, for i = 1 . . .N, (3)

where N is the number of pixels that belong to the object template. Next,
the rigid body transformation parameters a, b, c, d need to be solved from the
following over-determined linear system:

[
pi + ui

qi + vi

]
=

[
a −b
b a

] [
pi
qi

]
+

[
c
d

]
, for i = 1 . . .N, such that a2 + b2 = 1. (4)

First, we solve for c and d:

c =
1

N

N∑

i=1

ui, d =
1

N

N∑

i=1

vi. (5)

From (4) and (5), we obtain :
[
pi + ui − c
qi + vi − d

]
=

[
a −b
b a

] [
pi
qi

]
, such that a2 + b2 = 1. (6)

We solve for a and b from equation (6) with constrained least square minimiza-
tion [6].

3 Proposed Method

Object tracking has been illustrated here as an application of affine combination
[11]. The proposed tracking framework takes into account motion (affine/rigid
body) and texture in the dense optical flow computation.

3.1 Affine Combination and Pixel Correspondence

If X (2-by-1 column vector) denotes a pixel location, then the 2D affine trans-
formation of X is as follows: Y = AX + f, where A is a 2-by-2 matrix and f
is a 2-by-1 column vector; A and f together represent a 2D affine transforma-
tion. X and Y are known as the corresponding point pair. For a set of points
X1, X2, X3, ...., Xn, a linear combination:

∑n
i=1 αiXi is called affine combination

when scalar coefficients sum up to unity :
∑n

i=1 αi = 1 [11]. It is easy to establish
that for corresponding point pairs (Xi, Yi), the affine combinations

∑n
i=1 αiXi

and
∑n

i=1 αiYi are also corresponding points under the same affine transforma-
tion [11]. In other words, the affine combination parameters (αi) are invariant
under affine transformations. Since a rigid body transformation is a special type
of affine transformation, the aforementioned invariance holds as well with a rigid
body motion. We use this fact in our formulation for rigid body tracking.
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3.2 Object Tracking Using Affine Combination

Let O denote the set of pixel locations belonging to the object to be tracked.
This is obtained via segmentation (manual, semi-automatic, or automatic) on
the initial video frame. Let us choose three corner points of the bounding box
of O and denote them by X1, X2, and X3. The set of parameters related with
the affine combination of X1, X2, and X3 is denoted by: S = {(s1, s2) : X1 +
s1(X2 − X1) + s2(X3 − X1) ∈ O}. Since the set S is invariant under rigid
body transformations, tracking the object is equivalent to tracking the corner
locations X1, X2, and X3 over the image sequence. Notice that any three non-
collinear points X1, X2, and X3 can be utilized for our tracking framework. Let
(ẋk, ẏk), k = 1, 2, 3, denote the velocity of the kth corner Xk, then using (2), for
any (s1, s2) ∈ S, we can write:

[(1− s1 − s2)Ix s1Ix s2Ix (1− s1 − s2)Iy s1Iy s2Iy ][ẋ1 ẋ2 ẋ3 ẏ1 ẏ2 ẏ3]
T =

− It, ∀(s1, s2) ∈ S. (7)

Equation (7) has six unknown variables: ẋ1, ẋ2, ẋ3, ẏ1, ẏ2, ẏ3. Solutions are found
by the least squares method. Note these variables only provide the velocities at
the template corners. The corner coordinates are updated as follows. Let the
kth corner have coordinates, i.e., Xk = (xk, yk). After solving (7), the corner
coordinates are updated by a line search [5] in the direction of the velocities:

[x1 x2 x3 y1 y2 y3]
T ← [x1 x2 x3 y1 y2 y3]

T + a[ẋ1 ẋ2 ẋ3 ẏ1 ẏ2 ẏ3], (8)

where

a = argmin
b≥0

∑

(s1,s2)∈S

[I((1 − s1 − s2)(x1 + bẋ1) + s1(x2 + bẋ2) + s2(x3 + bẋ3),

(1− s1 − s2)(y1 + bẏ1) + s1(y2 + bẏ2) + s2(y3 + bẏ3))− g(s1, s2)]
2. (9)

g(s1, s2) is a template function for the object. It is assigned the image intensity
of the initial frame, i.e., the frame where tracking begins:

g(s1, s2) = I0((1− s1− s2)x
0
1 + s1x

0
2+ s2x

0
3, (1− s1− s2)y

0
1 + s1y

0
2 + s2y

0
3). (10)

The superscript 0 denotes the corners of the object on the initial frame I0. The
line search illustrated in (8)-(9) compares the object template intensity profile
g(s1, s2) with the current frame only along the direction of the computed velocity
[ẋ1 ẋ2 ẋ3 ẏ1 ẏ2 ẏ3]

T . So, while the least squares technique computes the direction
of displacement, the line search technique complements it with the magnitude of
the displacement. Notice that because of the line search our technique is much
less dependent on the multi-resolution pyramid computations that are almost
always a strict requirement in the traditional optical flow computations.
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3.3 Tracking with Rigid Body Constraints

If the object is assumed to have a rigid motion, then our aforementioned com-
putational framework can accommodate such motions easily. The constraints
imposed here are that the lengths between any two corner points for the object
template remain constant,i.e.,

(x1 − x2)
2 + (y1 − y2)

2 = C1,
(x2 − x3)

2 + (y2 − y3)
2 = C2,

(x3 − x1)
2 + (y3 − y1)

2 = C3.
(11)

When the above three equations are differentiated with respect to time and
collected in the matrix vector form, the following equation is formed:

⎡

⎣
(x1 − x2) (x2 − x1) 0 (y1 − y2) (y2 − y1) 0

0 (x2 − x3) (x3 − x2) 0 (y2 − y3) (y3 − y2)
(x1 − x3) 0 (x3 − x1) (y1 − y3) 0 (y3 − y1)

⎤

⎦

[ẋ1 ẋ2 ẋ3 ẏ1 ẏ2 ẏ3]
T =

⎡

⎣
0
0
0

⎤

⎦ (12)

Thus, for a rigid body tracking, we solve (7) with the homogeneous linear con-
straint (12). This is our proposed constrained linear least squares solution for
the rigid body tracking problem. Notice that for a rigid body motion constraint,
at least three equations as in (12) are required.

Fig. 1. Tracking results on tool sequence A. Proposed algorithm B. ES1 C. Irani’s
method [7] D. Brox optical flow method [2].

4 Results and Discussion

The proposed algorithm has been tested on 120 frames of a surgical tool video
for tracking tool [12]. This video has significant amount of clutter, which makes
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Fig. 2. Accuracy plot of four tracking methods : 1. Prpoposed Method 2. ES1 3. ES2
4. Irani’s Method [7] 5. Brox et al’s Method [2]

tracking a challenging task. Our algorithm is able to track the tool successfully
in all the subsequent 120 frames in spite of severe clutter. Figure 1, row A
shows various frames and our proposed rigid body tracker. For implementing
the proposed algorithm, we choose Matlab’s lsqlin function. To illustrate the
accuracy of the algorithm Pratt’s Figure of Merit (PFOM) [1] has been used
and accuracies of segmentation for all the frames have been represented as a
boxplot in Figure 2. The average time taken by our algorithms on an image
frame with our Matlab implementation has been illustrated in Table 1, which
shows that the proposed method is the fastest among its competitors.

The proposed method is compared with three other methods: exhaustive
search method, a one-step method using subspace constraints [7] and a two-
step method using optical flow computation by Brox et al.’s method [2]. Figure
1, rows B through D show the performances of these methods on various frames
of the surgical tool video sequence. These competing methods are described here.

We use two different settings for the exhaustive search. The first setting uses
unit spacing in horizontal, vertical and angular directions and is referred to as
“ES1” method. It can be observed that although ES1 performs better in terms of
accuracy Figure 2, it is about two orders of magnitude slower than our proposed
algorithm (Table 1). So, it can be concluded that a better accuracy can be
achieved by the exhaustive search algorithm only at the cost of running time.
When we use a spacing of 4 for the horizontal, vertical and angular directions,
the performance of tracking becomes inferior as Figure 2 shows. This method
is referred to as “ES2.” Note that the computation time of ES2 is still much
inferior to the proposed method (Table 1).

The proposed method has been also compared with another well established
optical flow based method [7], which has been developed on rigid body scenarios
on the assumption that the set of all displacements of all points across sev-
eral frames often resides in a low dimensional linear subspace. The main idea
of this algorithm was to extend the two-frame Lucas-Kanade [10] region based
constraint as well as the two-frame brightness constancy constraint to a general-
ized multi-frame method using the subspace constraints. Results show that our
method is more competitive with respect to both accuracy and time (Figure 1,
Figure 2, Table 1).
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Table 1. Running time comparison

Tracking Algorithms Time taken between
two consecutive frames (s)

Proposed algorithm 0.3

ES1 17.79

ES2 4.52

Irani’s method 9.52

Brox et al. 4.21

Fig. 3. Tracking results on vehicle sequences A. Car sequence in snowfall B. Car se-
quence (leftmost car having partial occlusion) C. Vehicle sequence having different
types of vehicles D,E,F. Vehicles moving on a busy street occluded by pedestrians.

Finally, the proposed method has been compared with a two-step optical flow
tracking [2], using rigid body constraints explained in Section 2. This optical flow
method was implemented using multiresolution pyramid. This method needed
some parameter tunings like the pyramid level for the multiresolution technique.
In comparison, our algorithm did not need any parameter tuning. For the two-
step algorithm, a 6 level pyramidwith 1.25 resolution spacing has been considered.
While for the proposed tracking method occurred at the original resolution. It is
observed from Figure 2 that the two-step method has much inferior accuracy than
the proposed method. Running times in Table 1 show that the two-step method
is at least an order of magnitude slower than the proposed method.

In Figure 1, the tracking results of our algorithm with rigid body constraints
have been compared with the results of the three other compared methods. It
can be observed that from frame 56, when the tool underwent a large motion,
Irani’s method and the two step optical flow method failed to track it while
our algorithm and the exhaustive search algorithm were able to keep track of it
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correctly. A boxplot illustrating the PFOM values for all the four algorithms has
been shown in Figure 2, which illustrates that the proposed algorithm is slightly
less in accuracy than the exhaustive search, but it outperforms exhaustive search
in running time which is shown in Table 1.

The visual results of tracking cars with the proposed method in different
videos have been shown in Figure 3. The first row has shown the tracking results
of a car sequence in a heavily cluttered video with snowfall. The second row has
illustrated the tracking results of another car sequence where the left most car
has been successfully tracked in spite of being partially occluded by a post on its
way. The third row has demonstrated the tracking results of a sequence including
different types of vehicles very small in size. Finally, fourth, fifth and sixth rows
show the results from a publicly available dataset [13] where the vehicles are
moving on a busy street and they are often occluded by pedestrians passing
by. The video outputs and Matlab codes of our techniques are available here:
http://webdocs.cs.ualberta.ca/~satarupa/tracking.html.
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