Wide-Angle Lens Distortion Correction Using Division Models

  • Miguel Alemán-Flores
  • Luis Alvarez
  • Luis Gomez
  • Daniel Santana-Cedrés
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8258)

Abstract

In this paper we propose a new method to automatically correct wide-angle lens distortion from the distorted lines generated by the projection on the image of 3D straight lines. We have to deal with two major problems: on the one hand, wide-angle lenses produce a strong distortion, which makes the detection of distorted lines a particularly difficult task. On the other hand, the usual single parameter polynomial lens distortion models is not able to manage such a strong distortion. We propose an extension of the Hough transform by adding a distortion parameter to detect the distorted lines, and division lens distortion models to manage wide-angle lens distortion. We present some experiments on synthetic and real images to show the ability of the proposed approach to automatically correct this type of distortion. A comparison with a state-of-the-art method is also included to show the benefits of our method.

Keywords

lens distortion wide-angle lens Hough transform line detection 

References

  1. 1.
    Alvarez, L., Gomez, L., Sendra, R.: An algebraic approach to lens distortion by line rectification. Journal of Mathematical Imaging and Vision 39(1), 36–50 (2008)Google Scholar
  2. 2.
    Alvarez, L., Gomez, L., Sendra, R.: Algebraic lens distortion model estimation. Image Processing On Line (2010), http://www.ipol.im
  3. 3.
    Alvarez, L., Gomez, L., Sendra, R.: Accurate depth dependent lens distortion models: an application to planar view scenarios. Journal of Mathematical Imaging and Vision 39(1), 75–85 (2011)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Brown, D.: Close-range camera calibration. Photogrammetric Engineering 37(8), 855–866 (1971)Google Scholar
  5. 5.
    Bukhari, F., Dailey, M.: Automatic radial distortion estimation from a single image. Journal of Mathematical Imaging and Vision 45(1), 31–45 (2012)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Bukhari, F., Dailey, M.N.: Robust radial distortion from a single image. In: Bebis, G., et al. (eds.) ISVC 2010, Part II. LNCS, vol. 6454, pp. 11–20. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Devernay, F., Faugeras, O.: Straight lines have to be straight. Machine Vision and Applications 13(1), 14–24 (2001)CrossRefGoogle Scholar
  8. 8.
    Faugeras, O., Toscani, G.: Structure from motion using the reconstruction and reprojection technique. In: Proc. IEEE Workshop on Computer Vision, pp. 345–348. IEEE Computer Society (November-December 1987)Google Scholar
  9. 9.
    Fitzgibbon, A.W.: Simultaneous linear estimation of multiple view geometry and lens distortion. In: Proc. IEEE International Conference on Computer Vision and Pattern Recognition, pp. 125–132 (2001)Google Scholar
  10. 10.
    Hartley, R.I., Zisserman, A.: Multiple view geometry in computer vision. Cambridge University Press (2004)Google Scholar
  11. 11.
    Hughes, C., Glavin, M., Jones, E., Denny, P.: Review of geometric distortion compensation in fish-eye cameras. In: IET Irish Signals and Systems Conference (ISSC 2008), Galway, Ireland, pp. 162–167 (2008)Google Scholar
  12. 12.
    Kang, S.: Radial distortion snakes. Proc. IEICE Transactions on Information and Systems, 1603–1611 (2000)Google Scholar
  13. 13.
    Lenz, R.: Linsenfehlerkorrigierte Eichung von Halbleiterkameras mit Standardobjektiven für hochgenaue 3D - Messungen in Echtzeit. In: Paulus, E. (ed.) Mustererkennung 1987, Informatik-Fachberichte, vol. 149, pp. 212–216. Springer, Heidelberg (1987)CrossRefGoogle Scholar
  14. 14.
    Salvi, J., Armangu, X., Batlle, J.: A comparative review of camera calibrating methods with accuracy evaluation. Pattern Recognition Letters 35(7), 1617–1635 (2002)CrossRefMATHGoogle Scholar
  15. 15.
    Wang, A., Qiu, T., Shao, L.: A simple method to radial distortion correction with centre of distortion estimation. Journal of Mathematical Imaging and Vision 35(3), 165–172 (2009)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Miguel Alemán-Flores
    • 1
  • Luis Alvarez
    • 1
  • Luis Gomez
    • 1
  • Daniel Santana-Cedrés
    • 1
  1. 1.CTIM (Centro de Tecnologías de la Imagen)Universidad de Las Palmas de Gran CanariaSpain

Personalised recommendations