Skip to main content

β-Arrestins: Regulatory Role and Therapeutic Potential in Opioid and Cannabinoid Receptor-Mediated Analgesia

  • Chapter
  • First Online:
Arrestins - Pharmacology and Therapeutic Potential

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 219))

Abstract

Pain is a complex disorder with neurochemical and psychological components contributing to the severity, the persistence, and the difficulty in adequately treating the condition. Opioid and cannabinoids are two classes of analgesics that have been used to treat pain for centuries and are arguably the oldest of “pharmacological” interventions used by man. Unfortunately, they also produce several adverse side effects that can complicate pain management. Opioids and cannabinoids act at G protein-coupled receptors (GPCRs), and much of their effects are mediated by the mu-opioid receptor (MOR) and cannabinoid CB1 receptor (CB1R), respectively. These receptors couple to intracellular second messengers and regulatory proteins to impart their biological effects. In this chapter, we review the role of the intracellular regulatory proteins, β-arrestins, in modulating MOR and CB1R and how they influence the analgesic and side-effect profiles of opioid and cannabinoid drugs in vivo. This review of the literature suggests that the development of opioid and cannabinoid agonists that bias MOR and CB1R toward G protein signaling cascades and away from β-arrestin interactions may provide a novel mechanism by which to produce analgesia with less severe adverse effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahn KH, Mahmoud MM, Shim JY, Kendall DA (2013) Distinct roles of β-arrestin 1 and β-arrestin 2 in ORG27569-induced biased signaling and internalization of the cannabinoid receptor 1 (CB1). J Biol Chem 288:9790–9800

    Article  CAS  PubMed  Google Scholar 

  • Attramadal H, Arriza JL, Aoki C, Dawson TM, Codina J, Kwatra MM, Snyder SH, Caron MG, Lefkowitz RJ (1992) Beta-arrestin2, a novel member of the arrestin/beta-arrestin gene family. J Biol Chem 267:17882–17890

    CAS  PubMed  Google Scholar 

  • Bailey CP, Kelly E, Henderson G (2004) Protein kinase C activation enhances morphine-induced rapid desensitization of mu-opioid receptors in mature rat locus ceruleus neurons. Mol Pharmacol 66:1592–1598

    Article  CAS  PubMed  Google Scholar 

  • Bailey CP, Oldfield S, Llorent J, Caunt CH, Teschemacher AG, Roberts L, McArdle CA, Smith FL, Dewy WL, Kelly E, Henderson G (2009) Involvement of PKC alpha and G-protein-coupled receptor kinase 2 in agonist-selective desensitization of mu-opioid receptors in mature brain neurons. Br J Pharmacol 158:157–164

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bohn LM, Raehal KM (2006) Opioid receptor signaling: relevance for gastrointestinal therapy. Curr Opin Pharmacol 6:559–563

    Article  CAS  PubMed  Google Scholar 

  • Bohn LM, Lefkowitz RJ, Gainetdinov RR, Peppel K, Caron MG, Lin FT (1999) Enhanced morphine analgesia in mice lacking beta-arrestin 2. Science 286:2495–2498

    Article  CAS  PubMed  Google Scholar 

  • Bohn LM, Gainetdinov RR, Lin FT, Lefkowitz RJ, Caron MG (2000) Mu-opioid receptor desensitization by beta-arrestin-2 determines morphine tolerance but not dependence. Nature 408:720–723

    Article  CAS  PubMed  Google Scholar 

  • Bohn LM, Gainetdinov RR, Caron MJ (2002) Differential mechanisms of morphine antinociceptive tolerance revealed in (beta)arrestin-2 knock-out mice. J Neurosci 22:10494–10500

    CAS  PubMed  Google Scholar 

  • Bohn LM, Gainetdinov RR, Caron MJ (2004) G protein-coupled receptor kinase/beta-arrestin systems and drugs of abuse: psychostimulant and opiate studies in knockout mice. Neuromolecular Med 5:41–50

    Article  CAS  PubMed  Google Scholar 

  • Breivogel CS, Lambert JM, Gerfin S, Huffman JW, Razdan RK (2008) Sensitivity to Δ9-tetrahydrocannabinol is selectively enhanced in beta-arrestin2-/- mice. Behav Pharmacol 19:298–307

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brennan F, Carr DB, Cousins M (2007) Pain management: a fundamental human right. Anesth Analg 105:205–221

    Article  PubMed  Google Scholar 

  • Bychkov E, Zurkovsky L, Garret MB, Ahmed MR, Gurevich EV (2012) Distinct cellular and subcellular distributions of G protein-coupled receptor kinase and arrestin isoforms in the striatum. PLoS One 7:e48912. doi:10.1371/journal.pone.0048912

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Celver JP, Lowe J, Kovoor A, Gurevich VV, Chavkin C (2001) Threonine 180 is required for G-protein-coupled receptor kinase 3- and beta-arrestin 2-mediated desensitization of the mu-opioid receptor in xenopus oocytes. J Biol Chem 276:4894–4900

    Article  CAS  PubMed  Google Scholar 

  • Celver J, Xu M, Jin W, Lowe J, Chavkin C (2004) Distinct domains of the mu-opioid receptor control uncoupling and internalization. Mol Pharmacol 65:528–537

    Article  CAS  PubMed  Google Scholar 

  • Cox BM (2012) Recent developments in the study of opioid receptors. Mol Pharm 83:723–728

    Article  Google Scholar 

  • Craft CM, Whitmore DH, Wiechmann AF (1994) Cone arrestin identified by targeting expression of a functional family. J Biol Chem 269:4613–4619

    CAS  PubMed  Google Scholar 

  • Daigle TL, Kearn CS, Mackie K (2008) Rapid CB1 cannabinoid receptor desensitization defined the time course of ERK1/2 MAP kinase signaling. Neuropharmacology 54:36–44

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dang VC, Napier IA, Christie MJ (2009) Two distinct mechanisms mediate acute μ-opioid receptor desensitization in native neurons. J Neurosci 29:3322–3327

    Article  CAS  PubMed  Google Scholar 

  • Dang VC, Chieng B, Azriel Y, Christie MJ (2011) Cellular morphine tolerance produced by βarresitn-2-dependent impairment of μ-opioid receptor resensitization. J Neurosci 31:7122–7130

    Article  CAS  PubMed  Google Scholar 

  • DeWire SM, Yamashita DS, Rominger DH, Liu G, Cowan CL, Graczyk TM, Chen XT, Pitis PM, Gotchev D, Yuan C, Koblish M, Lark MW, Violin JD (2013) A G protein-biased ligand at the μ-opioid receptor is potently analgesic with reduced gastrointestinal and respiratory dysfunction compared with morphine. J Pharmacol Exp Ther 344:708–717

    Article  CAS  PubMed  Google Scholar 

  • Dziaduleqicz EK, Bevan SJ, Brain CT, Coote PR, Culshaw AG, Davis AJ, Edwards LJ, Fisher AJ, Fox AJ, Gentry C, Vecchia L, Loong Y, Lyothier I, McNair KO, Farrell C, Peacoc M, Portmann R, Schopfer U, Yaqoob M, Zadrobilek J (2007) Napthlalen-11-yl-(4-pentyloxynapthalen-1-yl) methanone: a potent, orally bioavailable human CB1/CB2 dual agonist with antihyperalgesic properties and restricted central nervous system penetration. J Med Chem 50:3851–3856

    Article  Google Scholar 

  • Eisinger DA, Ammer H, Schulz R (2002) Chronic morphine treatment inhibits opioid receptor desensitization and internalization. J Neurosci 22:10192–10200

    CAS  PubMed  Google Scholar 

  • Elmes SJR, Jhaveri MD, Smart D, Kendall DA, Chapman V (2004) Cannabinoid CB2 receptor activation inhibits mechanically evoked responses of wide dynamic range dorsal horn neurons in naïve rats and in rat models of inflammatory and neuropathic pain. Eur J Neurosci 20:2311–2320

    Article  PubMed  Google Scholar 

  • Fields H (2004) State-dependent opioid control of pain. Nat Rev Neurosci 5:565–575

    Article  CAS  PubMed  Google Scholar 

  • Gainetdinov RR, Premont RT, Bohn LM, Lefkowitz RJ, Caron MG (2004) Desensitization of G protein-coupled receptors and neuronal functions. Annu Rev Neurosci 27:107–144

    Article  CAS  PubMed  Google Scholar 

  • Groer CE, Tidgewll K, Moyer RA, Harding WW, Rothman RB, Prisinzano TE, Bohn LM (2007) An opioid agonist that does not induced mu-opioid receptor/arrestin interactions or receptor internalization. Mol Pharmacol 71:549–557

    Article  CAS  PubMed  Google Scholar 

  • Groer CE, Schmid CL, Jaeger AM, Bohn LM (2011) Agonist-directed interactions with specific beta-arrestins determines mu-opioid receptor trafficking, ubiquitination, and dephosphorylation. J Biol Chem 286:31731–31741

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gurevich VV, Benovic JL (2000) Arrestin: mutagenesis, expression, purification, and functional characterization. Methods Enzymol 315:422–437

    Article  CAS  PubMed  Google Scholar 

  • Gurevich VV, Gurevich EV (2003) The new face of active receptor bound arrestin attracts new partners. Structure 11:1037–1042

    Article  CAS  PubMed  Google Scholar 

  • Gurevich EV, Benovic JL, Gurevich VV (2002) Arrestin2 and arrestin3 are differentially expressed in the rat brain during postnatal development. Neuroscience 109:421–436

    Article  CAS  PubMed  Google Scholar 

  • Gutstein HB, Akil H (2001) Opioid analgesics. In: Hardman JG, Limbird LE, Gilman AG (eds) Goodman and Gilman’s The pharmacological basis of therapeutics, 10th edn. McGraw Hill, New York, pp 569–620

    Google Scholar 

  • Haberstock-Debic H, Kin KA, Yu YJ, von Zastrow (2005) Morphine promotes rapid, arrestin-dependent endocytosis of mu-opioid receptors in striatal neurons. J Neurosci 25:7847–7857

    Article  CAS  PubMed  Google Scholar 

  • Henry AG, Hislop JN, Grove J, Thorn K, Marsh M, von Zastrow M (2012) Regulation of endocytic clathrin dynamics by cargo ubiquitination. Dev Cell 23:519–532

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hohmann AG, Farthing JN, Zvonok AM, Makriyannis A (2004) Selecitve activation of cannabinoid CB2 receptors suppresses hyperalgeisa evoked by intradermal capsaicin. J Pharmacol Exp Ther 308:446–453

    Article  CAS  PubMed  Google Scholar 

  • Hohmann AG, Suplita RL, Bolton NM, Neely MH, Fegley D, Mangieri R, Krey JF, Walker JM, Holmes PV, Crystal JD, Duranti A, Tontinin A, Mor M, Tarzia G, Piomelli D (2005) An endocannabinoid mechanism for stress-induced analgesia. Nature 435:1108–1112

    Article  CAS  PubMed  Google Scholar 

  • Howlett AC, Barth F, Bonner TI, Cabral G, Casellas P, Devane WA, Felder CC, Herkenham M, Mackie K, Martin BR, Mechoulam R, Pertwee RG (2002) International Union of Pharmacology. XXVII. Classification of cannabinoid receptors. Pharmacol Rev 54:161–202

    Article  CAS  PubMed  Google Scholar 

  • Ibrahim MM, Rude ML, Stagg NJ, Mata HP, Lai J, Vanderah TW, Porreca F, Buckley NE, Makriyannis A, Malan TP (2006) CB2 cannabinoid receptor mediation of nociception. Pain 122:36–42

    Article  CAS  PubMed  Google Scholar 

  • Jaggar SI, Hasnie FS, Sellaturay S, Rice ASC (1998) The anti-hyperalgesic actions of the cannabinoid anandamide and the putative CB2 recpetor agonist palmitoylethanolamine in visceral and somatic inflammatory pain. Pain 76:189–199

    Article  CAS  PubMed  Google Scholar 

  • Jiang B, Shi Y, Li H, Kang L, Ma L (2006) Decreased morphine analgesia in rat overexpressing beta-arrestin 2 at periaqueductal gray. Neurosci Lett 400:150–153

    Article  CAS  PubMed  Google Scholar 

  • Jin W, Brown S, Roche JP, Hsieh C, Celver JP, Kovoor A, Chavkin C, Mackie K (1999) Distinct domains of the CB1 cannaniboid receptor mediate desensitizaiton and internalization. J Neurosci 15:3773–3780

    Google Scholar 

  • Kang M, Maguma HT, Smith TH, Ross GR, Dewy WL, Akbarali HI (2012) The role of β-arrestin2 in the mechanism of morphine tolerance in the mouse and guina pig gastrointestinal tract. J Pharmacol Exp Ther 340:567–576

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kelly S, Chapman V (2001) Selective cannabinoid CB1 receptor activation inhibits spinal nociceptive transmission in vivo. J Neurophysiol 86:3061–3064

    CAS  PubMed  Google Scholar 

  • Kieffer BL (1999) Opioids: first lessons from knockout mice. Trends Pharmacol Sci 20:19–26

    Article  CAS  PubMed  Google Scholar 

  • Kieffer BL, Gaveriaux-Ruff C (2002) Exploring the opioid system by gene knockout. Prog Neurobiol 66:285–306

    Article  CAS  PubMed  Google Scholar 

  • Koch T, Brandenburg LO, Liang Y, Schulz S, Beyer A, Schröder H, Höllt V (2004) Phospholipase D2 modulates agonist-induced mu-opioid receptor desensitization and resensitization. J Neurochem 88:680–688

    Article  CAS  PubMed  Google Scholar 

  • Kovoor A, Nappey V, Kieffer BL, Chavkin C (1997) Mu and delta opioid receptors are differentially desensitized by the coexpression of beta-adrenergic receptor kinase 2 and beta-arresitn2 in xenopus oocytes. J Biol Chem 272:27605–27611

    Article  CAS  PubMed  Google Scholar 

  • Kovoor A, Celver JP, Wu A, Chavkin C (1998) Agonist induced homologous desensitization of mu-opioid receptors mediated by G protein-coupled receptor kinases is dependent on agonist efficacy. Mol Pharmacol 54:704–711

    CAS  PubMed  Google Scholar 

  • LaBuda CJ, Koblish M, Little PH (2005) Cannabinoid CB2 receptor agonist activity in the hindpaw incision model of postoperative pain. Eur J Pharmacol 527:172–174

    Article  CAS  PubMed  Google Scholar 

  • Lam H, Maga M, Pradhan A, Evans CJ, Maidment NT, Hales TG, Walwyn W (2011) Analgesic tone conferred by constitutively active mu opioid receptors in mice lacking β-arrestin 2. Mol Pain 7:24

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lamb K, Tidgewell K, Simpson DS, Bohn LM, Prisinzano TE (2012) Antinociceptive effects of herkinorin, a MOP receptor agonist derived from salvinorin A in the formalin test in rats: new concepts in mu opioid receptor pharmacology. Drug Alcohol Depend 121:181–188

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Law PY, Wong YH, Loh HH (2000) Molecular mechanisms and regulation of opioid receptor. J Biol Chem 277:15729–15735

    Google Scholar 

  • Li Y, Liu X, Liu C, Kang J, Yang J, Pei G, Wu C (2009) Improvement of morphine-mediated analgesia by inhibition of beta-arrestin 2 expression in mice periaqueductal gray matter. Int J Mol Sci 10:954–963

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lohse MJ, Benovic JL, Codina J, Caron MG, Lefkowitz RJ (1990) Beta-arrestin: a protein that regulates beta-adrenergic receptor function. Science 248:1547–1550

    Article  CAS  PubMed  Google Scholar 

  • Lowe JD, Celver JP, Gurevich VV, Chavkin C (2002) mu-Opioid receptors desensitize less rapidly than delta-opioid receptors due to less efficient activation of arrestin. J Biol Chem 277:15729–15735

    Article  CAS  PubMed  Google Scholar 

  • Macey TA, Lowe JD, Chavkin C (2006) Mu opioid receptor activation of ERK 1/2 is GRK3 and arrestin dependent in striatal neurons. J Biol Chem 281:34515–34524

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Malan TP, Ibrahim MM, Deng JF, Liu A, Mata HP, Vanderah T, Porreca R, Makriyannis A (2001) CB2 cannabinoid receptor-mediated peripheral antinociception. Pain 93:239–245

    Article  CAS  PubMed  Google Scholar 

  • Malik R, Soh UJ, Trejo J, Marchese A (2012) Novel roles for the E3 ubiquitin ligase atrophin-interacting protein 4 and signal transduction adaptor molecule 1 in G protein-coupled receptor signaling. J Biol Chem 287:9013–9027

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Matthes HW, Maldonado R, Simonin F, Valverde O, Slowe S, Kitchen I, Befort K, Dierich A, LeMeur M, Dollé P, Tzavara E, Hanoune J, Roques BP, Kieffer BL (1996) Loss of morphine-induced analgesia, reward effect and withdrawal symptoms in mice lacking the mu-opioid-receptor gene. Nature 383:819–823

    Article  CAS  PubMed  Google Scholar 

  • McPherson J, Rivero G, Baptist M, Lorente J, Al-Sabah S, Krasel C, Dewey WL, Bailey COP, Rosethorne EM, Charlton SJ, Henderson G, Kelly E (2010) μ-opioid receptors: correlation of agonist efficacy for signaling with ability to activate internalization. Mol Pharmacol 78:756–766

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mittal N, Tan M, Egbuta O, Desai N, Crawford C, Xie CW, Evans C, Walwyn W (2012) Evidence that behavioral phenotypes of morphine in β-arrs-/- mice are due to the unmaking of JNK signaling. Neuropscyhopharmacology 37:1953–1962

    Article  CAS  Google Scholar 

  • Molinari P, Vezzi V, Sbraccia M, Grò C, Riitano D, Ambrosio C, Casella I, Costa T (2010) Morphine-like opiates selectively antagonize receptor-arrestin interactions. J Biol Chem 285:12522–12535

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Murakami A, Yajima T, Sakuma H, McLaren MJ, Inana G (1993) X-arrestin: a new retinal arrestin mapping to the X chromosome. FEBS Lett 334:203–209

    Article  CAS  PubMed  Google Scholar 

  • Nguyen PT, Schmid CL, Raehal KM, Selley DE, Bohn LM, Sim-Selley LJ (2012) β-arrestin2 regulated cannabinoid CB1 receptor signaling and adaptation in a central nervous system region-dependent manner. Biol Psychiatry 71:714–724

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Palazzo E, Livio L, de Novellis V, Rossi F, Maione S (2010) The role of cannabinoid receptor in the descending modulation of pain. Pharmaceuticals 3:2661–2673

    Article  CAS  Google Scholar 

  • Pasternak GW (2013) Molecular biology of opioid analgesia. J Pain Symptom Manage 29:2–9

    Article  Google Scholar 

  • Patierno S, Anselmi L, Jaramill I, Scott D, Garcia R, Sternini C (2011) Morphine induces μ opioid receptor endocytosis in guinea pig enteric neurons following prolonged receptor activation. Gastroenterology 140:618–626

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pertwee RG (2005) The therapeutic potential of drugs that target cannabinoid receptors or modulate the tissue levels or actions of endocannabinoids. AAPS J 7:E625–654

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Por ED, Bierbower SM, Berg KA, Gomez R, Akopian AN, Wetsel WC, Jeske NA (2012) β-Arrestin-2 desensitizes the transient receptor potential vanilloid 1 (TRPV1) channel. J Biol Chem 287:37552–37563

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Por ED, Gomez R, Akopian AN, Jeske NA (2013) Phosphorylation regulates TRPV1 association with β-arrestin-2. Biochem J 451:101–109

    Article  CAS  PubMed  Google Scholar 

  • Przewlocka B, Sieja A, Starowicz K, Maj M, Bilecki W, Przewlocki R (2002) Knockdown of spinal opioid receptors by antisense targeting beta-arrestin reduces morphine tolerance and allodynia in rat. Neurosci Lett 325:107–110

    Article  CAS  PubMed  Google Scholar 

  • Qiu Y, Law PY, Loh HH (2003) Mu-opioid receptor desensitization: role of receptor phosphorylation, internalization and representation. J Biol Chem 278:36733–36739

    Article  CAS  PubMed  Google Scholar 

  • Quillinan N, Lau EK, Virk M, von Zastrow M, Williams JT (2011) Recovery from μ-opioid receptor desensitization after chronic treatment with morphine and methadone. J Neurosci 31:4434–4443

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Raehal KM, Bohn LM (2011) The role of beta-arrestin2 in the severity of antinociceptive tolerance and physical dependence induced by different opioid pain therapeutics. Neuropharmacology 63:1001–1019

    CAS  Google Scholar 

  • Raehal KM, Walker JK, Bohn LM (2005) Morphine side effects in beta-arresitn2 knockout mice. J Pharmacol Exp Ther 314:1195–1201

    Article  CAS  PubMed  Google Scholar 

  • Raehal KM, Schmid CL, Groer CE, Bohn LM (2011) Functional selectivity at the μ-opioid receptor: implications for understanding opioid analgesia and tolerance. Pharmacol Rev 63(4):1001–1019

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rea K, Roche M, Finn DP (2007) Supraspinal modulation of pain by cannabinoids: the role of GABA and glutamate. Br J Pharmacol 152:633–648

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Roy S, Liu HC, Loh HH (1998) Mu-opioid receptor-knockout mice: the role of mu-opioid receptor in gastrointestinal transit. Brain Res 56:281–283

    Article  CAS  Google Scholar 

  • Schmidlin F, Roosterman D, Bunnett NW (2003) The third intracellular loop and carboxyl tail of neurokinin 1 and 3 receptors determine interactions with beta-arrestins. Am J Physiol Cell Physiol 285:C945–C958

    Article  CAS  PubMed  Google Scholar 

  • Shinohara T, Dietzschold B, Craft CM, Wistow G, Early JJ, Donoso LA, Horwitz J, Tao R (1987) Primary and secondary structure of bovine retinal S antigen (48-kDa protein). Proc Natl Acad Sci USA 84:6975–6979

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sim LJ, Hampson RE, Deadwyler SA, Childers SR (1996) Effects of chronic treatment with delta9-tetrahydrocannabinol on cannabinoid-stimulated [35S]GTPgammaS autoradiography in rat brain. 16:8057-8066.

    Google Scholar 

  • Smith TH, Sim-Selley LJ, Selley DE (2010) Cannabinoid CB1 receptor-interacting proteins: novel targets for central nervous system drug discovery? Br J Pharmacol 160):454-66.

    Google Scholar 

  • Sokal DM, Elmes SJR, Kendall DA, Chapman V (2003) Intraplantar injection of anandamide inhibits mechanically-evoked responses of spinal neurons via activation of CB2 receptors in anaesthetized rats. Neuropharmacol 45:404–411

    Article  CAS  Google Scholar 

  • Sora I, Takahashi N, Funada M, Ujike H, Revay RS, Donovan DM, Miner LL, Uhl GR (1997) Opiate receptor knockout mice define mu receptor roles in endogenous nociceptive responses and morphine-induced analgesia. Proc Natl Acad Sci USA 94:1544–1549

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Suplita RL 2nd, Gutierrez T, Fegley D, Piomelli D, Hohmann AG (2006) Endocannabinoids at the spinal level regulate, but do not mediate, nonopioid stress-induced analgesia. Neuropharmacol 50:372–379

    Article  CAS  Google Scholar 

  • SvÍzenská I, Dubový P, Sulcová A (2008) Cannabinoid receptor 1 and 2 (CB1 and CB2), their distribution, ligands and functional involvement in nervous system structures—a short review. Pharmacol Biochem Behav 90:501–511

    Article  PubMed  Google Scholar 

  • Walwyn WM, Wei W, Xie CW, Chiu K, Kieffer BL, Evans CJ, Maidment NT (2006) Mu opioid receptor-effector coupling and trafficking in dorsal root ganglia neurons. Neuroscience 142:493–503

    Article  CAS  PubMed  Google Scholar 

  • Walwyn W, Evans CJ, Hales TG (2007) Beat-arrestin2 and c-Src regulate the constitutive activity and recycling of mu opioid receptors in dorsal root ganglion neurons. J Neurosci 27:5092–5104

    Article  CAS  PubMed  Google Scholar 

  • Whistler JL, von Zastrow M (1998) Morphine-activated opioid receptor eludes desensitization by beta-arrestin. Proc Natl Acad Sci USA 95:9914–9919

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Whistler JL, Chuang HH, Chu P, Jan LY, von Zastrow M (1999) Functional dissociation of mu opioid receptor signaling and endocytosis: implications for the biology of opiate tolerance and addiction. Neuron 23:737–746

    Article  CAS  PubMed  Google Scholar 

  • Williams JT, Ingram SL, Henderson G, Chavkin C, von Zastrow M, Schulz S, Koch T, Evans CJ, Christie MJ (2013) Regulation of μ-opioid receptors: desensitization, phosphorylation, internalization, and tolerance. Pharmacol Rev 65:223–254

    Article  PubMed  Google Scholar 

  • Yamaki K, Takahashi Y, Sakuragi S, Matsubara K (1987) Molecular cloning of the S-antigen cDNA from bovine retina. Biochem Biophys Res Comm 142:904–910

    Article  CAS  PubMed  Google Scholar 

  • Yang CH, Huang HW, Chen KH, Chen YS, Sheen-Chen SM, Lin CR (2011) Antinociceptive potentiation and attenuation of tolerance by intrathecal β-arrestin 2 small interfering RNA in rats. Br J Anaesth 107:774–781

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Ferguson SS, Barak LS, Bodduluri SR, Laporte SA, Law PY, Caron MG (1998) Roler for G protein-coupled receptor kinase in agonist-specific regulation of mu-opioid receptor responsiveness. Proc Natl Acad Sci USA 95:7157–7162

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang L, Zhao H, Qui Y, Loh HH, Law PY (2008) Src phosphorylation of μ-receptor is responsible for the receptor switching from an inhibitory to a stimulatory signal. J Biol Chem 284:1990–2000

    Article  PubMed  Google Scholar 

  • Zimmer A, Zimmer AM, Hohmann AG, Herkenhan M, Bonner TI (1999) Increased mortality, hypoactivity, and hypoalgesia in cannabinoid CB1 receptor knockout mice. Proc Natl Acad Sci USA 96:5780–5785

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kirsten M. Raehal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Raehal, K.M., Bohn, L.M. (2014). β-Arrestins: Regulatory Role and Therapeutic Potential in Opioid and Cannabinoid Receptor-Mediated Analgesia. In: Gurevich, V. (eds) Arrestins - Pharmacology and Therapeutic Potential. Handbook of Experimental Pharmacology, vol 219. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41199-1_22

Download citation

Publish with us

Policies and ethics