Advertisement

Natural User Interfaces in Volume Visualisation Using Microsoft Kinect

  • Anastassia Angelopoulou
  • José García-Rodríguez
  • Alexandra Psarrou
  • Markos Mentzelopoulos
  • Bharat Reddy
  • Sergio Orts-Escolano
  • Jose Antonio Serra
  • Andrew Lewis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8158)

Abstract

This paper presents the integration of human-machine interaction technologies within a virtual reality environment to allow for real-time manipulation of 3D objects using different gestures. We demonstrate our approach by developing a fully operational, natural user interface (NUI) system, which provides a front-end framework for back-end applications that use more traditional forms of input, such as wear cable sensors attached to the users. The implementation is a user-friendly system that has immense potential in a number of fields, especially in the medical sciences where it would be possible to increase the productivity of surgeons by providing them with easy access to relevant MRI scans.

Keywords

Growing Neural Gas 3D Sensors Natural User Interfaces Volume Visualisation 

References

  1. 1.
    Albrecht, I., Haber, J., Seidel, H.: Construction and animation of anatomically based human hand models. In: Proc. of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 98–109 (2003)Google Scholar
  2. 2.
    Angelopoulou, A., Psarrou, A., García Rodríguez, J.: A Growing Neural Gas Algorithm with Applications in Hand Modelling and Tracking. In: Cabestany, J., Rojas, I., Joya, G. (eds.) IWANN 2011, Part II. LNCS, vol. 6692, pp. 236–243. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  3. 3.
    Calhoun, P.S., Kuszyk, B., Heath, D., Carley, J., Fishman, E.: Three-dimensional volume rendering of spiral CT data: Theory and method. RadioGraphics 19(3), 745–764 (1999)CrossRefGoogle Scholar
  4. 4.
    Eddy, S.: Hidden Markov Models. Current Opinion in Structural Biology 6(3), 361–365 (1996)CrossRefGoogle Scholar
  5. 5.
    Fritzke, B.: Growing Cell Structures - A self-organising network for unsupervised and supervised learning. The Journal of Neural Networks 7(9), 1441–1460 (1994)CrossRefGoogle Scholar
  6. 6.
    Fritzke, B.: A growing Neural Gas Network Learns Topologies. In: Advances in Neural Information Processing Systems 7 (NIPS 1994), pp. 625–632 (1995)Google Scholar
  7. 7.
    Koike, H., Sato, Y., Kobayashi, Y.: Integrating Paper and Digital Information on Enhanced Desk: A Method for Real Time Finger Tracking on an Augmented Desk System. ACM Transactions on Computer-Human Interaction 8(4), 307–322 (2001)CrossRefGoogle Scholar
  8. 8.
    Martinez, T., Schulten, K.: Topology Representing Networks. The Journal of Neural Networks 7(3), 507–522 (1994)CrossRefGoogle Scholar
  9. 9.
    Ravikiran, J., Mahesh, K., Mahishi, S.: R., D., Sudheender, S., Pujari, N.: Finger detection for sign language recognition. In: International MultiConference of Engineers & Computer Scientists, p. 489 (2009)Google Scholar
  10. 10.
    Rosenblum, L.J.: Scientific Visualization: Advances and challenges, vol. 4 (1994)Google Scholar
  11. 11.
    Rusu, R., Cousins, S.: 3D is here: Point Cloud Library, PCL (2011)Google Scholar
  12. 12.
    Stergiopoulou, E., Papamarkos, N.: Hand gesture recognition using a neural network shape fitting technique. Engineering Applications of Artificial Intelligence 22(8), 1141–1158 (2009)CrossRefGoogle Scholar
  13. 13.
    Sui, C.: Appearance-based hand gesture identification. Master of Engineering, University of New South Wales (2011)Google Scholar
  14. 14.
    Vamplew, P., Adams, A.: Recognition of Sign Language Gestures using Neural Networks. Australian Journal of Intelligent Information Processing Systems 5(2), 94–102 (1998)Google Scholar
  15. 15.
    Wong, S., Ranganath, S.: Automatic Sign Language Analysis: A Survey and the Future beyond Lexical Meaning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 873–891 (2005)Google Scholar
  16. 16.
    Yang, J., Bang, W., Choi, E., Cho, S., Oh, J., Cho, J., Kim, S., Ki, E., Kim, D.: A 3D Hand-drawn Gesture Input Device Using Fuzzy ARTMAP-based Recognizer. Journal of Systemics, Cybernetics and Informatics 4(3), 1–7 (2009)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Anastassia Angelopoulou
    • 1
  • José García-Rodríguez
    • 2
  • Alexandra Psarrou
    • 1
  • Markos Mentzelopoulos
    • 1
  • Bharat Reddy
    • 1
  • Sergio Orts-Escolano
    • 2
  • Jose Antonio Serra
    • 2
  • Andrew Lewis
    • 3
  1. 1.Dept. of Computer Science and Software EngineeringUniversity of WestminsterUK
  2. 2.Dept. of Computing TechnologyUniversity of AlicanteSpain
  3. 3.Dept. of Engineering and Information TechnologyUniversity of GriffithAustralia

Personalised recommendations