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Abstract. This paper presents the integration of human-machine in-
teraction technologies within a virtual reality environment to allow for
real-time manipulation of 3D objects using different gestures. We demon-
strate our approach by developing a fully operational, natural user inter-
face (NUI) system, which provides a front-end framework for back-end
applications that use more traditional forms of input, such as wear cable
sensors attached to the users. The implementation is a user-friendly sys-
tem that has immense potential in a number of fields, especially in the
medical sciences where it would be possible to increase the productivity
of surgeons by providing them with easy access to relevant MRI scans.

Keywords: Growing Neural Gas, 3D Sensors, Natural User Interfaces,
Volume Visualisation.

1 Introduction

Volume visualization is an important form of scientific visualisation, allowing
investigation of, for example, medical scanned data such as CT and MRI data,
seismic survey data, and computational fluid dynamic (CFD) data [BII0]. To
better understand volumetric datasets, people use computer hardware and soft-
ware to manipulate the data and generate 2D projections for viewing. Much
research on volume visualisation has been focused on volume rendering (how
to render larger sets of data faster with a higher level of realism) or transfer
function generation (how to highlight the regions of interest). To help improve
the efficiency and efficacy of volume visualisation, one can integrate virtual real-
ity environments (VEs) and human computer interaction (HCI) technologies in
volume visualisation applications. However, these volume visualisation systems
require accurate tracking of posture and movement which is provided by wear
cable sensors attached to the users. Over the last decades there has been an
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increasing interest in using neural networks and computer vision techniques to
allow users to directly explore and manipulate objects in a more natural and intu-
itive environment without the use of electromagnetic tracking systems. With the
recent rise of motion sensing cameras, most notably Microsofts Kinect, gesture
recognition has added an extra dimension to human-machine interaction [9].

This paper presents a virtual reality visualisation system (VirtVis) that has
been designed and developed to use various virtual tools that allow users to di-
rectly explore and manipulate the volume data in 3D space. Many innovations
have been integrated into this system, including an optimisation of the hand
using the GNG network, an intuitive HCI paradigm tailored for volume visuali-
sation in VEs, and geometric tools that can assist users to fully reveal the internal
structure of volumetric datasets. Usability experiments have demonstrated that
volume visualisation tasks can be performed significant better in virtual reality
viewing conditions, and that using these geometric tools can significantly im-
prove the efficiency and efficacy of the volume visualisation process. The HCI
interaction used in VirtVis is based on natural and intuitive hand gestures. To
manipulate a virtual object, the user physically reaches to grasp and move it as
though it was real.

The remainder of the paper is organised as follows. Section 2 gives a theo-
retical background over sensor-free systems and our choice of selection. Section
3 discusses the implementation of the proposed system, before we conclude in
Section 4.

2 Sensor-Free Systems

Human gestures form an integral part in our verbal and non-verbal communi-
cation. We use them to reinforce meaning not always conveyed through speech,
to describe the shape of objects, to play games, to communicate in noisy en-
vironments, and to convey meaning to elderly people and people with special
needs. We can use gestures as expressive body motions or to translate non-verbal
languages that consist of a set of well defined gestures and hand postures with
complete lexical and grammatical specifications as in the case of sign languages.

Hand gestures, which are effectively a 2D projection of a 3D object, can
become very complex for any recognition system. Systems that follow a model-
based method [II13], require an accurate 3D model that captures efficiently the
hand’s high Degrees of Freedom (DOF) articulation and elasticity. The main
drawback of this method is that it requires massive calculations which makes it
unrealistic for real-time implementation. Since this method is too complicated
to implement, the most widespread alternative is the feature-based method [7]
where features such as the geometric properties of the hand can be analysed
using either Neural Networks (NN) [I4/16] or stochastic models such as Hidden
Markov Models (HMMs) [4U15].

We decided to use the former for the representation of human gestures since
our model should perform at high computational efficiency making it ideal for
real time environments, have low quantisation error, and allow for efficient trans-
formation of the objects. More specifically, we have used the GNG model since
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is superior in terms of computational efficiency, is robust against noise, and can
handle complex distributions [2[T2IT3]. As for a sensor-free hardware platform
which will allow the user to move freely and naturally in any environment we
decided to use Microsoft Kinect since it combines an RGB camera, infrared
depth sensor and multiarray microphone with a proprietary layer of software
that allows human body and voice recognition.

2.1 Growing Neural Gas (GNG)

GNG [0] is an unsupervised incremental self-organising network independent of
the topology of the input distribution or space. It uses a growth mechanism
inherited from the Growth Cell Structure [5] together with the Competitive
Hebbian Learning (CHL) rule [8] to construct a network of the input date set.
In some cases the probability distribution of the input data set is discrete and
is given by the characteristic function &, : R? — {0, 1} with &, defined by

_flifeeWw
&= {oirs e 1)

In the network &, represents the random input signal generated from the set
W C R? and W€ is the complement of W € R?. The growing process starts
with two nodes, and new nodes are incrementally inserted until a predefined
conditioned is satisfied, such as the maximum number of nodes or available
time. During the learning process local error measures are gathered to determine
where to insert new nodes. New nodes are inserted near the node with the
highest accumulated error and new connections between the winner node and
its topological neighbours are created.

The GNG algorithm consists of the following:

— A set A of cluster centres known as nodes. Each node ¢ € N has its as-
sociated reference vector {z.}Y; € R?. The reference vectors indicate the
nodes’ position or receptive field centre in the input distribution. The nodes
move towards the input distribution by adapting their position to the input’s
geometry using a winner take all mapping.

— Local accumulated error measurements and insertion of nodes. Each node
¢ € N with its associated reference vector {z.}; € RY has an error variable
E,, which is updated at every iteration according to:

AE,, = ||§w - quQ (2)

The local accumulated error is a statistical measure and is used for the
insertion and the distribution of new nodes. Nodes with larger errors will
cover greater area of the input probability distribution, since their distance
from the generated signal is updated by the squared distance. Knowing where
the error is large, if the number of the associated reference vectors belonging
to the input space is an integer multiple of a parameter \, a new node x, is
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inserted halfway between the node with the largest local accumulated error
x4 and its neighbour xy.

- T4 Jer f (3)
All connections are updated and local errors are decreased by:
AE,, = —aF,, (4)
AE,, = —aE,, (5)
A global decrease according to:
AE,, = —PE., (6)

is performed to all local errors by a constant 8. This is important since
new errors will gain greater influence in the network resulting in a better
representation of the topology.

— A set C of edges (connections) between pair of nodes. These connections
are not weighted and its purpose is to define the topological structure. The
edges are determined using the competitive hebbian learning method. The
updating rule of the algorithm is expressed as:

Axu - Gz(gw - 'TV) (7)

Az, = €, (& — xe),Ye €N (8)

where €, and €, represent the constant learning rates for the winner node =z,
and its topological neighbours z.. An edge aging scheme is used to remove
connections that are invalid due to the activation of the node during the
adaptation process.

2.2 3D Hand Representation with GNG

Figure [[ shows the ability of GNG to preserve the input data topology. Identify-
ing the points of the input data that belong to the objects allows the network to
adapt its structure to this input subspace, obtaining an induced Delaunay tri-
angulation of the object. GNG has been adapted using the Point Cloud Library
(PCL for the 3D surface representation. The main difference with the origi-
nal GNG algorithm is the omission of insertion/deletion actions after the first
frame. Since no neurons are added the system keeps the correspondence during
the whole sequence, solving intrinsically the problem of correspondence. This
adaptive method is also able to face real-time constraints, because the number A
of times that the internal loop is performed can be chosen according to the time
available between two successive frames that depend on the acquisition rate.
The mean time to obtain a GNG on a frame is about 10ms., using the adaptive
method. Thus, GNG provides a reduction of the input data, while preserving its
structure.

! The Point Cloud Library (or PCL) is a large scale, open project [11] for 2D/3D
image and point cloud processing.
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Fig. 1. 3D Hand representation with GNG

2.3 Microsoft Kinect

The Microsoft Kinect, is an accessory for Microsofts popular Xbox 360 gaming
console that removes or reduces the need for a controller by enabling motion
tracking in the Xbox 360, and allowing users to use their hands and bodies to
play games that can receive this information. All the experimental phase is based
on the use of real-world sequences obtained by the Kinect sensor. Such sensors
belong to the so-called RGB-D cameras since they provide RGB format images
with depth information per pixel. Specifically, Microsoft’s Kinect sensor is able
to get screenshots of 640x480 pixels and its corresponding depth information,
based on an infrared projector combined with a CMOS sensor with a resolu-
tion of 320x240 pixels, and can reach rates of up to 30 frames per second. A
first processing of sensor data enables obtaining the component in the z axis of
coordinates of the points in the three dimensional space.

For the segmentation of the hands from the background, a hybrid technique
based on depth information and skin colour has been used. A modification of
the Point Cloud Library (PCL) for the 3D surface representation of the objects
was used to support the 3D mesh reconstruction of the points based on the
GNG algorithm discussed in Section 2. In the past, point clouds have mainly
been created using 3D scanners. However, with the advent of technology such
as Kinect it is now possible to acquire a point cloud for an object by using the
depth sensor functionality. The construction of the VirtVis system is given in
Figure 2l The main functionalities of the system as can be seen in the flowchart
(User Modifies Object) are a menu system displayed on the screen, where the
user can select an option by putting their hand mark over the option and holding
for a few seconds (e.g. reset, change object, fly-through), and three indicators
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that show to the user where their hands and head are in relation to the virtual
environment (Track User). This provides constant feedback to the user about
the positioning of their hands.

D

Load Kinect

Track User

4

—:P/ Evaluate Input /

Option
Recat? Reset Controllable Object
User Yas
Modifies Track User
Objed?
W
Modify Controls
Madify Object
P A

Update UI A

Fig. 2. Flowchart of the whole system
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3 Experiments

Several experiments have been performed for the validation of our system. To
carry out all the experiments we used the Kinect SDK which provides a Run-
time class in C# that, once initialised, acts as an interface between the Kinect
and our system. The Runtime is initialised with the first active Kinect system
that the program finds, and is initialised with a number of Runtime options
that allow skeletal tracking, video display, and multi-player interfaces. Skeleton
Tracking is done via the Kinect Skeleton Engine, which provides, through the
SkeletonFrameReady event, positions for up to two skeletons, and various joints
on this skeleton. These joints positions are given according to the Kinects field of
view, and are converted from our system to screen sized dimensions to accurately
represent control of objects on screen.

The depth frame is constantly displayed in the top left hand corner of the
screen to provide a reference to the user of what the Kinect is picking up so they
can better position themselves for a good user interaction experience. Figure [3]
shows the VirtVis main window. The system is based around the users head
position, represented as an area that begins at 20% of the distance from the
Kinect to the user, and ends at 80% of the distance. If one or both of the users
hands are in this box, they are defined as active, and will do different things based
on which hands are active. For example, when both hands are active, the user
has activated the objects scaling functionality. Object scaling is calculated by
taking the vector distance between the left and right hands, as well as the vector
distance between the left and right shoulders. Shoulder joints are calculated to
make the scaling functionality more intuitive by ensuring that if the hands are
inside the shoulders, the object is smaller and when outside the object is bigger.

A modified version of PCL is used to save a reconstructed surface representa-
tion of the hand performing a gesture. Once the user has been tracked a timer
is started. The user is notified that they have three seconds to get their right
hand into position for the point cloud to be taken. After these three seconds the

Fig. 3. An example of a cube object being transformed using different gestures. Two
levels of fly-through functionality have been implemented similar to what is used in
the volume visualisation systems.
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functionality within PCL takes the point cloud of the right hand and reconstructs
the surface using the GNG algorithm discussed in section 2.

Usability testing has been conducted with the User Acceptance Testing (UAT).
UAT is common in agile methodology where tests are written as short one-stop
requirements where testers are asked to indicate whether a requirement was met,
partially met, or not met at all. Figure[d shows the results of the user experience
testing. There was found to be some ambivalence amongst users about whether

Partially
Testerl Tester2 Tester3 Testerd Tester5 Met Met NotMet Score (%)

Input
Natural User Interface
I'am able to control the object with my hands
Iam able to move an object on screen from one position to .
Sebhiis ! P Met  Met  Met Met  Mef . ; i s
Iam able to increase and decrease the size of an objecton Met Met Mot Met Met
screen 5 0 0 100
Iam able to rotate an objecton screen Met Met Met Met Met 5 0 0 100
Keyboard Interface

W AN Partially Partially .
Iam able to resetthe environment lam working in Met Met Met Met Met 5 3 i ol
Iam able to access a menuthatcontains relevant options Met Met Met Met Met 5 0 0 100
1am able ta change the 3D object | am working with NotMet NotMet NotMet NotMet NotMet o 0 5 ]
User Experience
Iam able to vlewthe ubje;tl can control, and am able to see Met Met Met Met Met
themtransformed in real-time 5 0 0 100
Iam able to view where myhands are in relation to the
virtualenvironment Y et M=h et hact Bt 5 (4] 0 100
Iam able to use a visual menu that extends the functionality
of the environment
Reset Met Met Met Met Met 5 0 0 100
Change Object [ NGEMEt  NotMet NoiMet NotMet Nothet | o 0 5 0
Fly-Through Met Met Met Met Met 5 0 0 100
Met ki 8 9 8 i |
Partially Met 1 0 (] 1 0 Average Test Score (%)
NotMet 2 o 2 2 Z
Score (%) 77.27273 81.81818 8181818 77.27273 81.51818 80

Fig. 4. User Acceptance Testing results

the reset requirement was met. Using the UAT scoring matrix, the requirement
has been assigned a test score of 80%. Two out of five testers indicated that this
functionality was partially met; indicating to the interviewer that they felt the
reset functionality should reset the entire window as opposed to just the object.
However, this is not necessary as the main environment is the controllable object
and a window reset can be done by restarting the application.

4 Conclusions and Future Work

In this paper we have presented an architecture to represent gestures based on
neural networks and 3D sensors. The system operates a fully functional nat-
ural user interface (NUI) with 3D reconstruction of hands, an intuitive HCI
paradigm, and tools for fly-through interactivity as is used in volume visualisa-
tion applications. As for future work, we will improve the system performance
at all stages to achieve a natural interface that allows us to interact with any
object manipulation system.
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