Edge Detection on Polynomial Texture Maps

  • Cristian Brognara
  • Massimiliano Corsini
  • Matteo Dellepiane
  • Andrea Giachetti
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8156)

Abstract

In this paper we propose a simple method to extract edges from Polynomial Texture Maps (PTM) or other kinds of Reflection Transformation Image (RTI) files. It is based on the idea of following 2D lines where the variation of corresponding 3D normals computed from the PTM coefficients is maximal. Normals are estimated using a photometric stereo approach, derivatives along image axes directions are computed in a multiscale framework providing normal discontinuity and orientation maps and lines are finally extracted using non-maxima suppression and hysteresis thresholds as in Canny’s algorithm. In this way it is possible to discover automatically potential structure of interest (inscriptions, small reliefs) on Cultural Heritage artifacts of interest without the necessity of interactively recreating images using different light directions. Experimental results obtained on test data and new PTMs acquired in an archaeological site in the Holy Land with a simple low-end camera, show that the method provides potentially useful results.

Keywords

Polynomial Texture Maps Cultural Heritage Edge Detection 

References

  1. 1.
    Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8(6), 679–698 (1986), http://dx.doi.org/10.1109/TPAMI.1986.4767851 CrossRefGoogle Scholar
  2. 2.
    Dellepiane, M., Corsini, M., Callieri, M., Scopigno, R.: High quality ptm acquisition: Reflection transformation imaging for large objects. In: Proceedings of the 7th International Symposium on Virtual Reality, Archaeology and Intelligent Cultural Heritage (VAST 2006), pp. 179–186. The Eurographics Association (2006)Google Scholar
  3. 3.
    Earl, G., Martinez, K., Malzbender, T.: Archaeological applications of polynomial texture mapping: analysis, conservation and representation. Journal of Archaeological Science 37(8), 2040–2050 (2010)CrossRefGoogle Scholar
  4. 4.
    Gunawardane, P., Wang, O., Scher, S., Davis, J., Rickard, I., Malzbender, T.: Optimized image sampling for view and light interpolation. In: VAST 2009: 10th International Symposium on Virtual Reality, Archaeology and Cultural Heritage. Faculty of ICT. University of Malta (2009)Google Scholar
  5. 5.
    Happa, J., Mudge, M., Debattista, K., Artusi, A., Gonçalves, A., Chalmers, A.: Illuminating the past: state of the art. Virtual Reality 14(3), 155–182 (2010)CrossRefGoogle Scholar
  6. 6.
    MacDonald, L., Robson, S.: Polynomial texture mapping and 3d representations. In: Proc. ISPRS Commission V. Symp. Close Range Image Measurement Techniques (2010)Google Scholar
  7. 7.
    Malzbender, T., Gelb, D., Wolters, H.: Polynomial texture maps. In: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, pp. 519–528. ACM (2001)Google Scholar
  8. 8.
    Mudge, M., Malzbender, T., Chalmers, A., Scopigno, R., Davis, J., Wang, O., Gunawardane, P., Ashley, M., Doerr, M., Proenca, A., Barbosa, J.: Image-Based Empirical Information Acquisition. In: Scientific Reliability, and Long-Term Digital Preservation for the Natural Sciences and Cultural Heritage. Eurographics Association, Crete (2008), http://www.eg.org/EG/DL/conf/EG2008/tutorials/T2.pdf
  9. 9.
    Padfield, J., Saunders, D., Malzbender, T.: Polynomial texture mapping: a new tool for examining the surface of paintings. ICOM Committee for Conservation 1, 504–510 (2005)Google Scholar
  10. 10.
    Palma, G., Corsini, M., Cignoni, P., Scopigno, R., Mudge, M.: Dynamic shading enhancement for reflectance transformation imaging. Journal on Computing and Cultural Heritage (JOCCH) 3(2), 6 (2010)Google Scholar
  11. 11.
    Raskar, R., Tan, K.H., Feris, R., Yu, J., Turk, M.: Non-photorealistic camera: depth edge detection and stylized rendering using multi-flash imaging. In: ACM Transactions on Graphics (TOG), vol. 23, pp. 679–688. ACM (2004)Google Scholar
  12. 12.
    Woodham, R.J.: Shape from shading. chap. Photometric method for determining surface orientation from multiple images, pp. 513–531. MIT Press, Cambridge (1989)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Cristian Brognara
    • 1
  • Massimiliano Corsini
    • 2
  • Matteo Dellepiane
    • 2
  • Andrea Giachetti
    • 1
  1. 1.Dip. InformaticaUniversità di VeronaVeronaItaly
  2. 2.Visual Computing LaboratoryISTI-CNRPisaItaly

Personalised recommendations