What Epipolar Geometry Can Do for Video-Surveillance

  • Nicoletta Noceti
  • Luigi Balduzzi
  • Francesca Odone
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8156)


In this paper we deal with the problem of matching moving objects between multiple views using geometrical constraints. We consider systems of still, uncalibrated and partially overlapped cameras and design a method able to automatically learn the epipolar geometry of the scene. The matching step is based on a functional that computes the similarity between objects pairs jointly considering different contributions from the geometry. We obtain an efficient method for multi-view matching based on simple geometric tools, requiring a very limited human intervention, and characterized by a low computational load. We will discuss the potential of our approach for video-surveillance applications on real data, showing very good results. Also, we provide an example of application to the consistent labeling problem for multi-camera tracking, and report a comparative analysis with other methods from the state of the art on the PETS 2009 benchmark dataset.


Epipolar geometry multi-view object tracking video-surveillance 


  1. 1.
    Berclaz, J., Fleuret, F., Turetken, E., Fua, P.: Multiple object tracking using k-shortest paths optimization. PAMI 33(9), 1806–1819 (2011)CrossRefGoogle Scholar
  2. 2.
    Black, J., Ellis, T.: Multi-camera image measurement and correspondence. Measurement 32(1), 61–71 (2002)CrossRefGoogle Scholar
  3. 3.
    Calderara, S., Cucchiara, R., Prati, A.: Bayesian-competitive consistent labeling for people surveillance. PAMI 30(2), 354–360 (2008)CrossRefGoogle Scholar
  4. 4.
    Chang, T., Gong, S., Ong, E.: Tracking multiple people under occlusion using multiple cameras. In: BMVC, pp. 566–576 (2000)Google Scholar
  5. 5.
    Chang, T.H., Gong, S.: Tracking multiple people with a multi-camera system. In: Work. on Multi-Object Tracking (2001)Google Scholar
  6. 6.
    Dockstader, S., Tekalp, A.: Multiple camera tracking of interacting and occluded human motion. Proc. of the IEEE 89(10), 1441–1455 (2001)CrossRefGoogle Scholar
  7. 7.
    Fishler, M., Bolles, R.: Random sample consensus: a paradigm for model fitting with applications to image analtsis and automated cartography. In: Comm. ACM, vol. 24, pp. 381–395 (1981)Google Scholar
  8. 8.
    Kasturi, R., Goldgof, D., Soundararajan, P., Manohar, V., Garofolo, J., Bowers, R., Boonstra, M., Korzhova, V., Zhang, J.: Framework for performance evaluation of face, text, and vehicle detection and tracking in video: Data, metrics, and protocol. PAMI 31(2), 319–336 (2009)CrossRefGoogle Scholar
  9. 9.
    Khan, S., Shah, M.: Consistent labeling of tracked objects in multiple cameras with overlapping fields of view. PAMI 25(10), 1355–1360 (2003)CrossRefGoogle Scholar
  10. 10.
    Khun, H.: The hungarian method for the assignment problem. Naval Research Logistic Quarterly 2, 83–97 (1955)CrossRefGoogle Scholar
  11. 11.
    Leal-Taixe, L., Pons-Moll, G., Rosenhahn, B.: Branch-and-price global optimization for multi-view multi-target tracking. In: CVPR, pp. 1987–1994 (2012)Google Scholar
  12. 12.
    Lee, L., Romano, R., Stein, G.: Monitoring activities from multiple video streams: Establishing a common coordinate frame. PAMI 22(8), 758–767 (2000)CrossRefGoogle Scholar
  13. 13.
    Mittal, A., Davis, L.: Unified multi-camera detection and tracking using region-matching. In: Work. on Multi-Object Tracking, pp. 3–10 (2001)Google Scholar
  14. 14.
    Mittal, A., Davis, L.S.: M2Tracker: A multi-view approach to segmenting and tracking people in a cluttered scene using region-based stereo. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002, Part I. LNCS, vol. 2350, pp. 18–33. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  15. 15.
    Noceti, N., Destrero, A., Lovato, A., Odone, F.: Combined motion and appearance models for robust object tracking in real-time. In: AVSS (2009)Google Scholar
  16. 16.
    Stauffer, C., Tieu, K.: Automated multi-camera planar tracking correspondence modeling. In: CVPR, vol. 1, pp. I–259 (2003)Google Scholar
  17. 17.
    Yue, Z., Zhou, S.K.: Robust two-camera tracking using homography. In: Int. Conf. on Acoustics, Speech, and Signal Processing, pp. 1–4 (2004)Google Scholar
  18. 18.
    Zhang, L., Li, Y., Nevatia, R.: Global data association for multi-object tracking using network flows. In: CVPR, pp. 1–8 (2008)Google Scholar
  19. 19.
    Zhou, Q., Aggarwal, J.K.: Object tracking in an outdoor environment using fusion of features and cameras. Image Vision Comput. 24(11), 1244–1255 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Nicoletta Noceti
    • 1
  • Luigi Balduzzi
    • 1
  • Francesca Odone
    • 1
  1. 1.DIBRISUniversità degli Studi di GenovaGenovaItaly

Personalised recommendations