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Abstract. In this paper we deal with the problem of matching moving
objects between multiple views using geometrical constraints. We con-
sider systems of still, uncalibrated and partially overlapped cameras and
design a method able to automatically learn the epipolar geometry of
the scene. The matching step is based on a functional that computes
the similarity between objects pairs jointly considering different contri-
butions from the geometry. We obtain an efficient method for multi-view
matching based on simple geometric tools, requiring a very limited hu-
man intervention, and characterized by a low computational load. We will
discuss the potential of our approach for video-surveillance applications
on real data, showing very good results. Also, we provide an example of
application to the consistent labeling problem for multi-camera tracking,
and report a comparative analysis with other methods from the state of
the art on the PETS 2009 benchmark dataset.

Keywords: Epipolar  geometry, multi-view  object  tracking,
video-surveillance.

1 Introduction

State-of-the-art video-surveillance systems available on the market often adopt
multiple cameras to be able to monitor large environments and tackle complex
situations [1]. Quite surprisingly, the algorithms processing the acquired video
streams rarely exploit prior information on the systems geometry. On one hand,
in minimal configuration setups cameras have a small or null overlap, and thus
system calibration becomes difficult and often not enough reliable. On the other
hand, redundant setups are characterized by large field of views overlaps, making
the calibration process more reliable but time-consuming. Also, all calibration
procedures usually require a high degree of intervention of specialized users and
may be not always accepted by surveillance systems installers.

In this work we consider systems of still, partially overlapped and uncalibrated
cameras, observing generic environments with a moderate crowding level. Our
goal is to build a model of the overall scene dynamics evolving over time. The
method we propose is based on a coarse annotation of the scene, that identifies
the main walkable components, as ground floor and stairs, that we approximate
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with planes. The annotation is the only part in the whole pipeline requiring hu-
man intervention. Given a pair of overlapped cameras, we relate the scenes at
a global level — estimating the fundamental matrix — and at a more local one,
building a homography relationship between each pair of homologous regions.
Global and local geometrical constraints jointly contribute — possibly with dif-
ferent weights — to the evaluation of the similarity between objects observed in
different views. Computing the pairwise similarity between all the objects at a
given time ¢, we populate a matrix from which we deduce matching relationships
and missing elements.

Over the last decades several methods adopting geometry within multi-camera
systems have been proposed. Among the first attempts, the work in [12] addresses
the problem of self-calibration of multiple cameras using feature correspondences
to determine the camera geometry. It assumes planarity of the observed scene
and sets the basis for working with an overhead view. In [T4IT7/T9] calibration
is used to model the 3D relationships between overlapped cameras. However,
in most cases full calibration is not available, thus geometry is recovered es-
timating geometrical transformations between the views from image features.
Multi-object matching has been addressed by imposing or learning geometrical
constraints on the observed scene [I3I2/6IAT6/39], often assuming planarity of
the ground [I6I3/9/13]. Some methods propose to precisely estimate the bound-
aries of the Field Of View (FOV) to disambiguate among the multiple possible
objects associations [3l9], other methods tackle the same problem by combining
geometry with appearance models [5l4].

The main contribution of this work is an analysis of what well-accepted geo-
metrical tools can do to improve the reliability of real video-surveillance systems.
The result is a method that, given a coarse annotation of the scene geometry, first
provides a viable calibration procedure, and second builds a model of the scene
dynamics which we use to match objects across the views. This model could be
applied to deal with occlusions, tracking noise and consistent labeling. We do not
add constraints on the environments and do not need to explicitly determine the
common fields of view. Our method requires a very limited human intervention
and is computationally very efficient, providing real-time performances.

We experimentally evaluate the multi-camera matching per se — addressing
the so-called consistent labeling problem [9] — on both annotated data and ob-
servations obtained from a tracker to discuss the potential of our solution. Then,
we also evaluate the accuracy of our method within multi-camera tracking on
the benchmark data of PETS 2009, comparing them with the state of the art.

The rest of the paper is organized as follows. In Sec. Blwe discuss the estimation
of the geometry, while in Sec. Bl we detail our approach. Sec. @ and [Bl are devoted
to the experimental analysis, and, finally, Sec. [d is left to discussions.

2 Estimation of the Geometry between Two Views

In this section we discuss a simple way to estimate the epipolar geometry be-
tween camera pairs, specifically designed to be practicable for video-surveillance
systems installations.
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The correspondences between the views can be easily established by consider-
ing videos with a single person walking, spanning all the walkable floor regions
of the scene, similarly to [3]. We employ a motion segmentation algorithm to
locate the moving objects and extract two points for each object: the head, or
upper point (up), and the feet, or lower point (1p). We show in Fig.[Ilan example
of input for a given camera pair (upper points in green, lower points in blue).
We thus finally collect the ordered sets UP¢ = {up§{}5 | and LP¢ = {Ip{} X |,
where ¢ = {1,2} from now on refers to the camera index and K is the number
of corresponding points. We also call P¢ the union of lower and upper points for
each camera: P! = UP' ULP', P2 =UP?U LP2

Fig. 1. An example of input corresponding points (upper points in green, lower points
in blue). Two main regions are annotated, which correspond to ground floor and stairs.

To cope with possible non-planarities of the scene, each image plane is coarsely
manually annotated to identify the main structural elements. We only consider
walkable, not occluded regions (see Fig. [l) that may be approximated with a
plane and characterized by a significant spatial extent.

Let us assume R = {R,}V_; is the set of regions globally annotated in the
two cameras. We first consider the transformation between the image planes as
a whole, that is the fundamental matrix F: (p?)7 Fp! = 0 with p* € P! and
p? € P? corresponding points. Then we focus on the M regions observed in both
the views, M < N. For each one of those, we estimate the homography H,,, such
that p? = H,,p', where p! € LP! lies on R}, and p? € LP? lies on R2,.

We solve all the obtained systems using the Direct Linear Transformation
(DLT) algorithm with RANSAC [7], that allows us to cope with the presence of
outliers (strongly affecting our input data) and avoid unstable solutions. At the
end of the calibration procedure, we have obtained the matrices modeling the
geometrical transformation from scene 1 to scene 2: F and H,,,, m=1... M.

3 Matching across Views

In this section we describe our approach to matching between multiple views.
For the sake of clarity, in what follows we consider a single pair of overlapped
cameras. In presence of more than two pairwise overlapped cameras, a graph
modeling the transitions between cameras can be defined [T6/3] to guide the
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(b)

Fig. 2. The different contributions to the similarity measure of a person walking on
the ground floor (Fig. and on the stairs (Fig. 2(b)). F is the fundamental matrix,
while Hr and Hg refer to the homographies related to ground floor and stairs regions,
respectively.

visit of the cameras network. The transitive property of subsequent assignments
on different cameras guarantees the global consistency of the labeling.

3.1 Geometry-Based Objects Similarity

Let O} = (up},lp;) and O7 = (up?,lp;) be the descriptors of two objects
observed in scene 1 and 2 respectively. We define dy = d(F lptl7 lpf) and do =
d(Fup}, up?), where d denotes the geometric distance between the epipolar lines
and a point. Then we introduce the contributions of the regions R,,,, 1 < m < M
common to the views: d,, = ||Hlp; — 1p?||2.

The similarity between the objects is a combination of all the contributions:

o & B, & &
— m
5(0;,07) = wy exp (202) =+ wa exp (202) + Ef1w3+m_1 €xp < 952 > (1)

where o controls the spatial region in which associations should be considered,
while the ws weight the importance of each contribution to the final results. They
might be chosen depending on prior information when available, or estimated
from the data with an appropriate training procedure.

Notice that our method does not require a precise estimation of the common
fields of view. Although we restrict the analysis to common regions only, the
areas actually observed by each camera might only partially overlap. Thanks to
the use of different geometrical contributions, we are able to automatically cope
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with points missing in one of the two views. In Fig. 2] we provide two examples
of the contributions to the similarity measure.

3.2 Objects Matching

Let us assume to have, at time ¢, two scenes S} = {Oil’t}g\]:l1 and S? = {sz’t}év;l.
In order to compute the matching between the two scenes, we build a matrix
M e RN1*N2 where each element is computed as
(i) = SO O3 + 501 0L) o)
This matrix models the dynamics of the scene at time ¢ as observed from the
views 1 and 2. Since the number of elements in the scenes can be different, we
fix a threshold 7 of minimum similarity under which an entry of M is set to zero.
From M we may deduce which are the objects belonging to both the views
(matches) and what objects are present in one view only (objects without a
match). In the case of noiseless data, we could assume that when an object of
scene 1 is viewed also in scene 2 then it will correspond to ezxactly one of its
objects. In this case a match could be indicated by an entry in M maximum
on its row and column (e.g. through the Hungarian algorithm [10]). Missing
elements of scene 1 would be denoted by a null row, missing elements from scene
2 by a null column.

Fig. 3. An example of segmentation error: object 1 of scene 1 corresponds to objects
8 and 9 of scene 2

However in real world applications, the data intrinsically contain noise, due
to error in the object segmentation and to objects partially overlapping. Thus, it
is very likely to happen that an object of one view actually corresponds to more
than one object in the other (see e.g. Fig.[B]). We thus modify the matching rule
to account for not univocal associations, by imposing that if M (4, j) > 0 then it
is the only one on its row or on its column. If not so, we progressively simplify
the matrix by rejecting the lowest values of a subregion of M until the condition
holds. The subregion is identified by rows and columns of the elements in the
i-row (M (i, —)) or in the j-column (M (—,j)) greater than zero.
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4 Experiments on Multi-camera Matching

We validated our approach to multi-camera matching on a dataset acquired in-
house (the dataset will be available for download at http://slipguru.disi.
unige.it). It consists of 4 cameras with partially overlapped views (see FigH)
that monitor a moderately crowded outdoor environment. All the cameras but
Cam observe both planar and non-planar areas. A ground truth of the trajecto-
ries is available, with a common identifier between all the views for each person.

We annotated ground floor and stairs in each scene and estimated the pro-
jection matrices F', Hr and Hg. To evaluate the performance of our approach
we interpret the data by considering matched objects as positives and objects
without a match as negatives. We take into account both, estimating Positive
Predictive Value, True Positive Rate, Negative Predictive Value, True Nega-
tive Rate, Accuracy and F-measure. In all the experiments, we fix 7 = 0.5 and
o = 15, while the weights ws are automatically selected on a training set using
a grid-search approach (each w is sampled in the range [0, 1] with sampling step
0.05 and such that the weights sum up to 1) and selecting the best performing
combination in terms of matching correctness. We use the first minute of each
video as training set, the remainder (about 2') is adopted as a test set.

4.1 Assessment on Annotated Data

We first assess our approach on the annotated objects. In Tab. [[] are the weights
learned automatically from the data, that reflect the peculiarities of the scenes
pair. In the case of the pair Izus-Cam, e.g., a great importance is done to Hp,
since Cam only observes the floor. The homography is also rather significant for
Nikon-Cam even if the distance between the common observed floor region and
Nikon makes the contribution of Hp more noisy and thus the measures obtained
with F' gain a higher weight. When the cameras observe ground floor and stairs
both the homographies are taken into account and enforced with at least one
contribution from the epipolar geometry.

Tab. Rlreports the comparison of the methods with weights learning (last row)
with a selection of other configurations. The case Hrlp + Hglp and Flp + Fup
are considered as minimal configurations that explicitly account for scene with
multiple planar regions. As shown, the weights learning allows us to reach the
best results, showing the capability of adapting to different scene peculiarities.

“

(a) [xus. - (b) Nikon () Cam (d) Rx}()()

Fig. 4. Example frames of the dataset we adopted in the experimental analysis
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Table 1. Weights selected via the training stage

Camera pair w
Flp Fup Hrlp Hslp

Irus-Nikon 0 0.6 0.2 0.2
Izus-Cam 0 02 08 O
Irus-Rx100 0 0.4 0.1 0.5
Nikon-Cam 0.2 0.3 0.5 0
Nikon-Rx1000.3 0 04 0.3
Cam-Rx100 0 0.5 05 O

Table 2. Average performance of the matching procedure over all cameras pairs on
annotated data

Configuration PPV TPR NPV TNR ACC F

Hrlp 0.98 0.74 0.67 0.99 0.80 0.79
Hslp 0.94 0.56 0.40 1.00 0.67 0.65
Flp 0.76 0.72 0.68 0.93 0.81 0.78
Fup 0.62 0.57 0.54 0.86 0.69 0.64

Hrlp+ Hslp 096 0.74 0.54 0.99 0.80 0.79
Flp+ Fup 0.79 0.73 0.68 0.92 0.82 0.79
Our approach 0.98 0.96 0.91 0.99 0.97 0.97

4.2 Evaluations on Measured Data

We now move to the analysis on real data. At each time instant we first apply
a motion-based object segmentation and update a tracking [I5] on each view
independently, and then run the multi-view matching. We consider a match as
correct if the two objects involved correspond to the same identity in the ground
truth. The correspondence might be partial because of not univocal associa-
tions. Similarly, an object of one scene is considered correctly not matched if in
the other view it is not observed or a detection is missing for it. The average
performances (Tab. Bl) show very accurate results although a decrease in the

Table 3. Average performance of the matching procedure over all cameras pairs on
measured data

Configuration PPV TPR NPV TNR ACC F

Hrlp 0.61 0.58 0.76 0.79 0.71 0.71
Hslp 0.36 0.21 0.67 0.94 0.77 0.73
Flp 0.45 0.80 0.88 0.54 0.60 0.64
Fup 0.36 0.77 0.86 0.40 0.49 0.53

Hrlp + Hslp 0.66 0.57 0.78 0.82 0.75 0.75
Flp+ Fup 042 0.87 0.91 043 0.54 0.58
Our approach 0.65 0.84 0.91 0.73 0.76 0.79
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values due to the noise in the data. In this gap we can read an intrinsic limit of
this approach: it is expected to increase as the crowd level in the scene grows,
influencing the matching accuracy.

5 Experiments on Multi-camera Tracking

To show a possible application for video-surveillance, we apply our matching
strategy to assign a common identifier to the same person observed from different
views. This problem is commonly referred to as consistent labeling. At each
time instant, we consider the tracking history from each camera and apply the
multi-view matching. If for a given time interval a match has been continuously
detected we assign a common identifier to the two objects and label the match
as stable. Then, we exploit the association to recover the identities of objects
whose trajectory has been cut in subparts, due to tracking failures.

]
% - 1l = Izus Nikon Cam Rz100
I ' It Irus  0.610.98 0.97 0.97
- | | |I| Nikon 0.98 0.45 0.96 0.98
_.|.|||_|;_||||_ . .III Cam 099 0.99 0.67 0.98
Rz1000.95 0.95 0.94 0.48
(a) Single-camera ) Two-cameras

Fig. 5. Tracking results using 2 cameras observations to compute consistent labeling

We first consider our dataset and show in Fig. [l the tracking performance
for a cameras pair (Jzus-Nikon, the one in Fig. [I). Each bar corresponds to an
identity in the ground truth, the height reflects the trajectory length. In red we
denote the length of the annotated trajectory, while in yellow the length of the
measured one. The latter might be lower due to tracking failures. The magenta
bars give a visual impression of the spatio-temporal overlap between trajectories
annotated and reconstructed with single-view (Fig. or multi-view (Fig.
tracking. The latter clearly allows us to recover from tracking failures.

To show such capability in general, we evaluate the average percentage of
spatio-temporal overlap between annotated and reconstructed trajectories. If
more than one trajectories correspond to the same annotated object, we only
consider the longest. We report the results in table of the right of Fig. [l (1 means
full overlap). The diagonal brings information on single view tracking, while the
other values (i,j) tell us how much the i-th camera benefits from the mutual
observations with the j-th camera. The table nicely show the gain of multi-view
analysis.

We finally evaluate the performances of our approach on the benchmark
dataset PETS 2004Y. Due to the limited number of observations, we avoid the

! http://www.cvg.rdg.ac.uk/PETS2009/a.html
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weights learning and instead force the geometrical constraints (F and a single
H) to have the same importance. We compare our results on tracking accuracy
and missing detections (evaluated following the CLEAR metric [§]) with the
analysis reported in [IT], where the authors propose a method to jointly track
multiple objects in multiple views based on formulating the assignment problem
as a min-cost problem. Tab. M reports the comparison: for camera pairs, our
method performs comparably to [I1], but differently from [I1] we have a gain
when increasing the number of cameras to three.

Table 4. Performance evaluation on PETS 2009 benchmark data. In brackets, the
number of cameras adopted for the evaluations.

Method TA Miss. Det.
Zhan et al.(1) [I8] O. 66 0.28
Our approach [I5] (1) 0 0.26
Proposed in [I1] (2) 0. 76 0.17
Our approach (2) 0.79  0.19
Proposed in [11] (3) 0.71  0.13
Our approach (3) 0.8 0.16
Berclaz et al. [I] (5) 0.75

6 Discussions

In this paper we showed how very simple geometrical tools can be profitably
adopted within multi-camera surveillance setups. We considered systems of still,
partially overlapped and uncalibrated cameras and proposed a multi-view match-
ing strategy based on geometrical constraints. Our method estimates the epipo-
lar geometry, and is based on a coarse annotation of the scene. We designed a
similarity function making use of different geometry ingredients with variable
importances, and showed in the experimental analysis — performed on real data
— that learning the weights directly from the data allowed us to automatically
adapt to general environment. We reported object matching performances on
both annotated and measured data, validating our approach. We finally dis-
cussed the potential of our method to address the consistent labeling problem.
We compared our method with other state-of-art approaches on the benchmark
dataset PETS 2009, showing the benefit of increasing the number of cameras.
As a future development, we will integrate the matching module in a real surveil-
lance setting. This will allow us to, on one hand, collect large amount of data,
while, on the other, test the robustness of the method with respect to time.
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