Skip to main content

Methods for the Isolation and Investigation of the Diversity of Cold-Adapted Yeasts and Their Ex Situ Preservation in Worldwide Collections

  • Chapter
  • First Online:
Cold-adapted Yeasts

Abstract

Cold-adapted (psychrophilic and psychrotolerant) yeasts have been isolated from a variety of substrates, using a variety of cultivation methods. Yeasts able to grow at as low as 0 °C have been isolated from cold substrates such as glaciers, snow, and deep-sea sediment, but also from temperate and tropical climates. A broad diversity of media and culture conditions have been used to isolate and cultivate these yeasts. Low-temperature incubation is used to select for psychrophiles, thus depending on the strains relatively long incubation time (up to 14 weeks) may be required. Cold-adapted yeast strains belong to many species in many clades of Ascomycota and Basidiomycota. Numerous strains have been deposited in public culture collections. Online strain catalogs of some public yeast culture collections include searchable fields for growth temperatures, allowing selection of yeasts able to grow at desired temperatures. Culture-independent methods for profiling yeast diversity in mixed communities can be used to profile populations, allowing detection of yeasts whose DNA is present in a specimen but that were not cultivated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abyzov S (1993) Microorganisms in the Antarctic ice. In: Friedmann E (ed) Antarctic microbiology. Wile-Liss, New York, pp 265–295

    Google Scholar 

  • Andrews S, DeGraaf H, Stamatin H (1997) Optimization of methodology for enumeration of xerophilic yeasts from foods. Int J Food Microbiol 35:109–116

    Article  PubMed  CAS  Google Scholar 

  • Bandoni RJ (1972) Terrestrial occurrence of some aquatic hyphomycetes. Can J Bot 50:2283–2288

    Article  Google Scholar 

  • Bass D, Howe A, Brown N, Barton H, Demidova M, Michelle H, Li L, Sanders H, Watkinson SC, Willcock S (2007) Yeast forms dominate fungal diversity in the deep oceans. Proc Royal Soc B: Biol Sci 274:3069–3077

    Article  CAS  Google Scholar 

  • Bellemai E, Davey ML, Kauserud H, Epp LS, Boessenkool S, Coissac E, Geml J, Edwards M, Willerslev E, Gussarova G (2013) Fungal paleodiversity revealed using high- throughput metabarcoding of ancient DNA from arctic permafrost. Environ Microbiol 15:1176–1189

    Article  Google Scholar 

  • Bennett S (2004) Solexa ltd. Pharmacogenomics 5:433–438

    Article  PubMed  Google Scholar 

  • Beuchat LR (1998) Progress in conventional methods for detection and enumeration of foodborne yeasts. Food Technol Biotechnol 36:267–272

    Google Scholar 

  • Bokulich NA (2012) Next-generation approaches to the microbial ecology of food fermentations. Biochem Mol Biol Rep 45:377–389

    CAS  Google Scholar 

  • Bokulich N, Hwang C, Liu S, Boundy-Mills K, Mills D (2012) Profiling the yeast communities of wine fermentations using terminal restriction fragment length polymorphism analysis. Am J Enol Vitic 63:185–194

    Article  CAS  Google Scholar 

  • Bokulich N, Ohta M, Richardson P, Mills D (2013) Monitoring seasonal changes in winery-resident microbiota. PLoS ONE, (in press)

    Google Scholar 

  • Boundy-Mills K (2006) Methods for investigating yeast biodiversity. In: Rosa CA, Péter G (eds) Biodiversity and ecophysiology of yeasts. Springer, pp 67–100

    Google Scholar 

  • Boundy-Mills K (2012) Yeast culture collections of the world: meeting the needs of industrial researchers. J Ind Microbiol Biotechnol 39:673–680

    Article  PubMed  CAS  Google Scholar 

  • Brizzio S, Turchetti B, de Garcia V, Libkind D, Buzzini P, van Broock M (2007) Extracellular enzymatic activities of basidiomycetous yeasts isolated from glacial and subglacial waters of northwest Patagonia (Argentina). Can J Microbiol 53:519–525

    Article  PubMed  CAS  Google Scholar 

  • Butinar L, Santos S, Spencer Martins I, Oren A, Gunde-Cimerman N (2005) Yeast diversity in hypersaline habitats. FEMS Microbiol Lett 244:229–234

    Article  PubMed  CAS  Google Scholar 

  • Butinar L, Spencer-Martins I, Gunde-Cimerman N (2007) Yeasts in high Arctic glaciers: the discovery of a new habitat for eukaryotic microorganisms. A van Leeuwenhoek 91:277–289

    Article  Google Scholar 

  • Butinar L, Strmole T, Gunde-Cimerman N (2011) Relative incidence of ascomycetous yeasts in Arctic coastal environments. Microb Ecol 61:832–843

    Article  PubMed  Google Scholar 

  • Buzzini P, Branda E, Goretti M, Turchetti B (2012) Psychrophilic yeasts from worldwide glacial habitats: diversity, adaptation strategies and biotechnological potential. FEMS Microbiol Ecol 82:217–241

    Article  PubMed  CAS  Google Scholar 

  • Catranis C, Starmer W (1991) Microorganisms entrapped in glacial ice. Antarct J US 26:234–236

    Google Scholar 

  • Cocolin L, Bisson L, Mills D (2000) Direct profiling of the yeast dynamics in wine fermentations. FEMS Microbiol Lett 189:81–87

    Article  PubMed  CAS  Google Scholar 

  • Cousin M, Jay J, Vasavada P (1992) Psychrotrophic microorganisms. Compendium Methods Microbiol Exam Food 3:153–165

    Google Scholar 

  • Davenport R (1980) Cold-tolerant yeasts and yeast-like organisms. In: Skinner F, Passmore S, Davenport R (eds) Biology and activities of yeasts. Academic Press, London, pp 215–230

    Google Scholar 

  • de García V, Brizzio S, Libkind D, Buzzini P, Van Broock M (2007) Biodiversity of cold-adapted yeasts from glacial meltwater rivers in Patagonia, Argentina. FEMS Microbiol Ecol 59:331–341

    Article  PubMed  Google Scholar 

  • Deak T (2003) Detection, enumeration and isolation of yeasts. In: Boekhout T, Robert V (eds) Yeasts in food: beneficial and detrimental aspects. B. Behr’s Verlag GmbH & Co, Hamburg, pp 39–68

    Chapter  Google Scholar 

  • Di Menna ME (1966) Yeasts in Antarctic soils. A van Leeuwenhoek 32:29–38

    Article  Google Scholar 

  • Ercolini D (2004) PCR-DGGE fingerprinting: novel strategies for detection of microbes in food. J Microbiol Meth 56:297–314

    Article  CAS  Google Scholar 

  • Fell JW, Statzell-Tallman A, Kurtzman CP (2004) L. meyersii sp. nov., an ascosporogenous yeast from mangrove regions in the Bahama Islands. Stud Mycol 50:359–363

    Google Scholar 

  • Fung DY (1999) Overview of rapid methods of microbiological analysis. Food Microbiol Analytical Methods: New Technol 12:1

    Google Scholar 

  • Gilichinsky D, Rivkina E, Bakermans C, Shcherbakova V, Petrovskaya L, Ozerskaya S, Ivanushkina N, Kochkina G, Laurinavichuis K, Pecheritsina S (2005) Biodiversity of cryopegs in permafrost. FEMS Microbiol Ecol 53:117–128

    Article  PubMed  CAS  Google Scholar 

  • Gronstal AL, Voytek MA, Kirshtein JD, Nicole M, Lowit MD, Cockell CS (2009) Contamination assessment in microbiological sampling of the Eyreville core, Chesapeake Bay impact structure. Geol Soc Am Special Papers 458:951–964

    Article  Google Scholar 

  • Gunde-Cimerman N, Zalar P, Hoog S, Plemenitaš A (2000) Hypersaline waters in salterns–natural ecological niches for halophilic black yeasts. FEMS Microbiol Ecol 32:235–240

    CAS  Google Scholar 

  • Gunde-Cimerman N, Sonjak S, Zalar P, Frisvad JC, Diderichsen B, Plemenitaš A (2003) Extremophilic fungi in arctic ice: a relationship between adaptation to low temperature and water activity. Phys Chem Earth A/B/C 28:1273–1278

    Article  Google Scholar 

  • Hagler A, Ahearn D (1987) Ecology of aquatic yeasts. In: Rose A, Harrison J (eds) The yeasts, vol 2., Yeasts and the environmentAcademic Press, London, pp 181–205

    Google Scholar 

  • Hamby KA, Hernández A, Boundy-Mills K, Zalom FG (2012) Associations of yeasts with spotted-wing Drosophila (Drosophila suzukii; Diptera: Drosophilidae) in cherries and raspberries. Appl Environ Microbiol 78:4869–4873

    Article  PubMed  CAS  Google Scholar 

  • Hattori T (1980) A note on the effect of different types of agar on plate count of oligotrophic bacteria in soil. J Gen Appl Microbiol 26:373–374

    Article  Google Scholar 

  • Heard G, Fleet G (1986) Evaluation of selective media for enumeration of yeasts during wine fermentation. J Appl Bacteriol 60:477–481

    Article  Google Scholar 

  • Hernandez P, Beuchat L (1995) Evaluation of diluents and media for enumerating Zygosaccharomyces rouxii in blueberry syrup. Int J Food Microbiol 25:11–18

    Article  PubMed  CAS  Google Scholar 

  • Hocking AD, Pitt JI (1980) Dichloran-glycerol medium for enumeration of Xerophilic fungi from low-moisture foods. Appl Environ Microbiol 39:488–492

    PubMed  CAS  Google Scholar 

  • Hocking A, Pitt J, Samson R, King A (1992) Recommendations from the closing session of SMMEF II. In: Samson R, Hocking A, Pitt J, King A (eds) Modern methods in food mycology. Elsevier, Amsterdam, pp 359–368

    Google Scholar 

  • Ikemoto E, Kyo M (1993) Development of microbiological compact mud sampler. JAMSTEC Res 30:1–16

    Google Scholar 

  • Kimball J, Corcoran EF, Wood FE (1963) Chlorophyll-containing microorganisms in the aphotic zone of the oceans. Bull Marine Sci 13:574–577

    Google Scholar 

  • King A, Hocking A, Pitt J (1979) Dichloran-rose bengal medium for enumeration and isolation of molds from foods. Appl Environ Microbiol 37:959–964

    PubMed  Google Scholar 

  • Kutty SN, Philip R (2008) Marine yeasts: a review. Yeast 25:465–483

    Article  PubMed  CAS  Google Scholar 

  • Libkind D, Brizzio S, Van Broock M (2004) R. mucilaginosa, a carotenoid producing yeast strain from a Patagonian high-altitude lake. Folia Microbiol 49:19–25

    Article  CAS  Google Scholar 

  • López-García P, Rodríguez-Valera F, Pedrós-Alió C, Moreira D (2001) Unexpected diversity of small eukaryotes in deep-sea Antarctic plankton. Nature 409:603–607

    Article  PubMed  Google Scholar 

  • Ma L, Catranis CM, Starmer WT, Rogers SO (1999) Revival and characterization of fungi from ancient polar ice. Mycologist 13:70–73

    Article  Google Scholar 

  • Ma L-J, Rogers SO, Catranis CM, Starmer WT (2000) Detection and characterization of ancient fungi entrapped in glacial ice. Mycologia 92:286–295

    Article  Google Scholar 

  • Margesin R (ed) (2009) Permafrost soils. Springer, Berlin

    Google Scholar 

  • Margesin R, Zacke G, Schinner F (2002) Characterization of heterotrophic microorganisms in Alpine glacier cryoconite. Arctic Antarct Alp Res 34:88–93

    Article  Google Scholar 

  • Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J, Braverman MS, Chen Y-J, Chen Z (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376–380

    PubMed  CAS  Google Scholar 

  • Martini A, Ciani M, Scorzetti G (1996) Direct enumeration and isolation of wine yeasts from grape surfaces. American J Enol Viticult 47:435–440

    Google Scholar 

  • Montes MJ, Belloch C, Galiana M, Garcia MD, Andrés C, Ferrer S, Torres-Rodriguez JM, Guinea J (1999) Polyphasic taxonomy of a novel yeast isolated from Antarctic environment; description of Cryptococcus victoriae sp. nov. Syst Applied Microbiol 22:97–105

    Article  CAS  Google Scholar 

  • Nagahama T, Hamamoto M, Nakase T, Takami H, Horikoshi K (2001) Distribution and identification of red yeasts in deep-sea environments around the northwest Pacific Ocean. A van Leeuwenhoek 80:101–110

    Article  CAS  Google Scholar 

  • Nagahama T, Hamamoto M, Nakase T, Takaki Y, Horikoshi K (2003) Cryptococcus surugaensis sp. nov., a novel yeast species from sediment collected on the deep-sea floor of Suruga Bay. Int J Syst Evol Microbiol 53:2095–2098

    Article  PubMed  CAS  Google Scholar 

  • Rogers S, Theraisnathan V, Ma L, Zhao Y, Zhang G, Shin S-G, Castello J, Starmer WT (2004) Comparisons of protocols for decontamination of environmental ice samples for biological and molecular examinations. Appl Environ Microbiol 70:2540–2544

    Article  PubMed  CAS  Google Scholar 

  • Samson RA, Hoekstra ES, Frisvad JC (2004) Introduction to food-and airborne fungi, 7th edn. Centraalbureau voor Schimmelcultures (CBS), Utrecht

    Google Scholar 

  • Schmidt-Lorenz W (1983) Indicator organisms in frozen foods in relation to spoilage. A van Leeuwenhoek 48:625–633

    Article  Google Scholar 

  • Shivaji S, Prasad G (2009) Antarctic yeasts: biodiversity and potential applications. In: Satyanarayana T, Kunze G (eds) Yeast biotechnology: diversity and applications. Springer, Berlin, pp 3–18

    Chapter  Google Scholar 

  • Singh P, Singh SM (2012) Characterization of yeast and filamentous fungi isolated from cryoconite holes of Svalbard, Arctic. Polar Biol 35:575–583

    Article  Google Scholar 

  • Sláviková E, Vadkertiová R, Kocková-Kratochvílová A (1992) Yeasts isolated from artificial lake waters. Can J Microbiol 38:1206–1209

    Article  Google Scholar 

  • Solís L, Sánchez E, García S, Heredia N (2009) Traditional methods for detection of foodborne pathogens. In: Heredia N, Wesley I (eds) Microbiologically safe foods. Wiley, Hoboken, pp 525–546

    Google Scholar 

  • Tadych M (2008) International cooperative biodiversity groups central Asia project. Rutgers, The State University of New Jersey, USA

    Google Scholar 

  • Tomkin R (1963) Refrigeration temperature as an environmental factor influencing the microbial quality of food: a review. Food Technol 27:54–58

    Google Scholar 

  • Turchetti B, Buzzini P, Goretti M, Branda E, Diolaiuti G, D’Agata C, Smiraglia C, Vaughan-Martini A (2008) Psychrophilic yeasts in glacial environments of Alpine glaciers. FEMS Microbiol Ecol 63:73–83

    Article  PubMed  CAS  Google Scholar 

  • Vishniac HS, Onofri S (2003) Cryptococcus antarcticus var. circumpolaris var. nov., a basidiomycetous yeast from Antarctica. A van Leeuwenhoek 83:231–233

    Article  CAS  Google Scholar 

  • Vishnivetskaya T, Kathariou S, McGrath J, Gilichinsky D, Tiedje JM (2000) Low-temperature recovery strategies for the isolation of bacteria from ancient permafrost sediments. Extremophiles 4:165–173

    Article  PubMed  CAS  Google Scholar 

  • Vorobyova E, Soina V, Gorlenko M, Minkovskaya N, Zalinova N, Mamukelashvili A, Gilichinsky D, Rivkina E, Vishnivetskaya T (1997) The deep cold biosphere: facts and hypothesis. FEMS Microbiol Rev 20:277–290

    Article  CAS  Google Scholar 

  • Wagner D (2008) Microbial communities and processes in Arctic permafrost environments. In: Dion P, Nautiyal C (eds) Microbiology of extreme soils. Springer, Berlin, pp 133–154

    Chapter  Google Scholar 

  • Welthagen J, Viljoen B (1997) Comparison of ten media for the enumeration of yeasts in dairy products. Food Res Int 30:207–211

    Article  Google Scholar 

  • Zucconi L, Selbmann L, Buzzini P, Turchetti B, Guglielmin M, Frisvad J, Onofri S (2012) Searching for eukaryotic life preserved in Antarctic permafrost. Polar Biol 35:749–757

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyria L. Boundy-Mills .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Boundy-Mills, K.L. (2014). Methods for the Isolation and Investigation of the Diversity of Cold-Adapted Yeasts and Their Ex Situ Preservation in Worldwide Collections. In: Buzzini, P., Margesin, R. (eds) Cold-adapted Yeasts. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39681-6_2

Download citation

Publish with us

Policies and ethics