Skip to main content

Low-Temperature Production of Wine, Beer, and Distillates Using Cold-Adapted Yeasts

  • Chapter
  • First Online:
Cold-adapted Yeasts

Abstract

Recently, low-temperature fermentation has been recognized as a valuable tool to improve the flavor of fermented foods such as alcoholic beverages, e.g., in terms of improved ratios of off-flavor compounds to desirable compounds on total volatiles produced during fermentation. Extremely low-temperature fermentation processes can be made feasible using psychrophilic or psychrotolerant yeasts, combined with cell immobilization techniques and suitable bioreactor design. At research level, many studies deal with the optimization of low-temperature alcoholic fermentation (0–15 °C) in order to improve product quality, produce different products from the same raw material, and create added value. Studies dealing with these aspects also discuss ways to maintain bioreactors when production in the factory ceases, as well as the production of low-cost, ready-to-use dried yeast formulations. The application of extremely low-temperature fermentation in winemaking, brewing, distillates, and other fermented food production, as well as cold-adaptation aspects for food yeasts is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguilera J, Randez-Gil F, Prieto JA (2007) Cold response in Saccharomyces cerevisiae: new functions for old mechanisms. FEMS Microbiol Rev 31:327–341

    Article  PubMed  CAS  Google Scholar 

  • Argiriou T, Kanellaki M, Voliotis S, Koutinas AA (1996) Kissiris-supported yeast cells: High biocatalytic stability and productivity improvement of immobilized yeast cells by successive preservations at 0°C. J Agr Food Chem 44:4028–4031

    Article  CAS  Google Scholar 

  • Athanasiadis I, Boskou D, Kanellaki M, Koutinas AA (1999) Low-temperature alcoholic fermentation by delignified cellulosic material supported cells of kefir yeast. J Agr Food Chem 49:658–663

    Article  CAS  Google Scholar 

  • Bakoyianis V, Kanellaki M, Kalliafas A, Koutinas AA (1992) Low temperature wine-making by immobilized cells on mineral kissiris. J Agr Food Chem 40:1293–1296

    Article  CAS  Google Scholar 

  • Bakoyianis V, Kana K, Kalliafas A, Koutinas AA (1993) Low-temperature continuous wine-making by kissiris-supported biocatalyst: volatile by-products. J Agr Food Chem 41:465–468

    Article  CAS  Google Scholar 

  • Bakoyianis V, Koutinas AA, Aggelopoulos K, Kanellaki M (1997) Comparative study of kissiris, γ-alumina and Ca-alginates as supports of cells for batch and continuous wine making at low temperatures. J Agr Food Chem 45:4884–4888

    Article  CAS  Google Scholar 

  • Bardi E, Koutinas AA (1994) Immobilization of yeast on delignified cellulosic material for room temperature and low-temperature wine making. J Agr Food Chem 42:221–226

    Article  CAS  Google Scholar 

  • Bardi E, Bakoyianis V, Koutinas AA, Kanellaki M (1996a) Room temperature and low temperature wine making using yeast immobilized on gluten pellets. Process Biochem 31:425–430

    Article  CAS  Google Scholar 

  • Bardi E, Koutinas AA, Soupioni M, Kanellaki M (1996b) Immobilization of yeast on delignified cellulosic material for low temperature brewing. J Agr Food Chem 44:463–467

    Article  CAS  Google Scholar 

  • Bardi E, Koutinas AA, Psarianos C, Kanellaki M (1997a) Volatile by-products formed in low-temperature wine-making using immobilized yeast cells. Process Biochem 32:579–584

    Article  CAS  Google Scholar 

  • Bardi E, Koutinas AA, Kanellaki M (1997b) Room and low temperature brewing by yeast immobilized on gluten pellets. Process Biochem 32:691–696

    Article  CAS  Google Scholar 

  • Bekatorou A, Koutinas AA, Kaliafas A, Kanellaki M (2001a) Freeze-dried Saccharomyces cerevisiae cells immobilized on gluten pellets for glucose fermentation. Process Biochem 36:549–557

    Article  CAS  Google Scholar 

  • Bekatorou A, Koutinas AA, Psarianos C, Kanellaki M (2001b) Low-temperature brewing by freeze-dried immobilized cells on gluten pellets. J Agr Food Chem 49:373–377

    Article  CAS  Google Scholar 

  • Bekatorou A, Soupioni MJ, Koutinas AA, Kanellaki M (2002a) Low-temperature brewing by freeze-dried immobilized cells. Appl Biochem Biotech 97:105–121

    Article  CAS  Google Scholar 

  • Bekatorou A, Sarellas A, Ternan NG, Mallouchos A, Komaitis M, Koutinas AA, Kanellaki M (2002b) Low-temperature brewing using yeast immobilized on dried figs. J Agr Food Chem 50:7249–7257

    Article  CAS  Google Scholar 

  • Belloch C, Orlic S, Barrio E, Querol A (2008) Fermentative stress adaptation of hybrids within the Saccharomyces sensu stricto complex. Int J Food Microbiol 122:188–195

    Article  PubMed  CAS  Google Scholar 

  • Beltran G, Novo M, Leberre V, Sokol S, Labourdette D, Guillamon JM, Mas A, Francois J, Rozes N (2006) Integration of transcriptomic and metabolic analyses for understanding the global responses of low-temperature winemaking fermentations. FEMS Yeast Res 6:1167–1183

    Article  PubMed  CAS  Google Scholar 

  • Bourdichon F, Casaregola S, Farrokh C, Frisvad JC, Gerds ML, Hammes WP, Harnett J, Huys G, Laulund S, Ouwehand A, Powell IB, Prajapati JB, Seto Y, Ter Schure E, Van Boven A, Vankerckhoven V, Zgoda A, Tuijtelaars S, Hansen EB (2012) Food fermentations: microorganisms with technological beneficial use. Int J Food Microbiol 154:87–97

    Article  PubMed  CAS  Google Scholar 

  • Branyik T, Vicente AA, Dostalek P, Teixeira JA (2008) A review of flavour formation in continuous beer fermentations. J Inst Brewing 114:3–13

    Article  CAS  Google Scholar 

  • Buzzini P, Branda E, Goretti M, Turchetti B (2012) Psychrophilic yeasts from worldwide glacial habitats: diversity, adaptation strategies and biotechnological potential. FEMS Microbiol Ecol 82:217–241

    Article  PubMed  CAS  Google Scholar 

  • Cadière A, Aguera E, Caillé S, Ortiz-Julien A, Dequin S (2012) Pilot-scale evaluation the enological traits of a novel, aromatic wine yeast strain obtained by adaptive evolution. Food Microbiol 32:332–337

    Article  PubMed  CAS  Google Scholar 

  • Cardona F, Carrasco P, Pérez-Ortín JE, del Olmo ML, Aranda A (2007) A novel approach for the improvement of stress resistance in wine yeasts. Int J Food Microbiol 114:83–91

    Article  PubMed  CAS  Google Scholar 

  • Caridi A, Corte V (1997) Inhibition of malolactic fermentation by cryotolerant yeasts. Biotechnol Lett 19:723–726

    Article  CAS  Google Scholar 

  • Castellari L, Magrini P, Passarelli P, Zambonelli C (1995) Effect of must fermentation temperature on minor products formed by cryo and non-cryotolerant Saccharomyces cerevisiae strains. Ital J Food Sci 2:125–132

    Google Scholar 

  • D’Amico S, Collins T, Marx JC, Feller G, Gerday C (2006) Psychrophilic microorganisms: challenges for life. EMBO Rep 7:385–389

    Article  PubMed  CAS  Google Scholar 

  • Domizio P, Lencioni L, Ciani M, Di Blasi S, Pontremolesi C, Sabatelli MP (2007) Spontaneous and inoculated yeast populations dynamics and their effect on organoleptic characters of Vinsanto wine under different process conditions. Int J Food Microbiol 115:281–289

    Article  PubMed  CAS  Google Scholar 

  • Donalies UE, Nguyen HT, Stahl U, Nevoigt E (2008) Improvement of Saccharomyces yeast strains used in brewing, wine making and baking. Adv Biochem Eng Biotechnol 111:67–98

    PubMed  CAS  Google Scholar 

  • Eustace R, Thornton RJ (1987) Selective hybridization of wine yeasts for higher yields of glycerol. Can J Microbiol 33:112–117

    Article  CAS  Google Scholar 

  • Garruti DS, de Abreu FAP, Franco MRB, Aparecida MAP (2006) The influence of fermentation temperature and sulfur dioxide on the volatile composition and flavour profile of cashew wine. Dev Food Sci 43:109–112

    Article  CAS  Google Scholar 

  • Giudici P, Zambonelli C, Passarelli P, Castellari L (1995) Improvement of wine composition with cryotolerant Saccharomyces strains. Am J Enol Viticult 46:143–147

    CAS  Google Scholar 

  • Grant CM (2001) Role of the glutathione/glutaredoxin and thioredoxin systems in yeast growth and response to stress conditions. Mol Microbiol 39:533–541

    Article  PubMed  CAS  Google Scholar 

  • Guerzoni ME, Marchetti R, Giudici P (1985) Modifications of aroma components of wines obtained by fermentation with Saccharomyces cerevisiae mutants. B OIV 58:228–234

    CAS  Google Scholar 

  • Hara S, Iimura Y, Oyama H, Kozeki T, Kitano K, Otsuka KI (1981) The breeding of cryophilic killer wine yeasts. Agr Biol Chem 45:1327–1334

    Article  Google Scholar 

  • Herrero O, Ramón D, Orejas M (2008) Engineering the Saccharomyces cerevisiae isoprenoid pathway for de novo production of aromatic monoterpenes in wine. Metab Eng 10:78–86

    Article  PubMed  CAS  Google Scholar 

  • Iconomopoulou M, Kanellaki M, Psarianos C, Koutinas AA (2000) Delignified cellulosic material supported biocatalyst as freeze-dried product in alcoholic fermentation. J Agr Food Chem 48:958–961

    Article  CAS  Google Scholar 

  • Iconomopoulou M, Kanellaki M, Soupioni M, Koutinas AA (2002a) Freeze dried immobilized cells on delignified cellulosic material in low-temperature and ambient temperature wine making. Appl Biochem Biotechnol 104:23–36

    Article  Google Scholar 

  • Iconomopoulou M, Psarianos K, Kanellaki M, Koutinas AA (2002b) Low temperature and ambient temperature wine making using freeze dried immobilized cells on gluten pellets. Process Biochem 37:707–717

    Article  CAS  Google Scholar 

  • Jackson RS (1994) Wine science, Principles and applications, 1st edn. Academic Press INC, London

    Google Scholar 

  • Jiménez-Martí E, Zuzuarregui A, Ridaura I, Lozano N, del Olmo M (2009) Genetic manipulation of HSP26 and YHR087 W stress genes may improve fermentative behaviour in wine yeasts under vinification conditions. Int J Food Microbiol 130:122–130

    Article  PubMed  CAS  Google Scholar 

  • Kana K, Kanellaki M, Papadimitriou A, Psarianos C, Koutinas AA (1989a) Immobilization of Saccharomyces cerevisiae on γ-Alumina pellets and its ethanol production in glucose and raisin extract fermentation. J Ferment Bioeng 68:213–215

    Article  CAS  Google Scholar 

  • Kana K, Kanellaki M, Psarianos C, Koutinas AA (1989b) Ethanol production by Saccharomyces cerevisiae immobilized on mineral kissiris. J Ferment Bioeng 68:144–147

    Article  CAS  Google Scholar 

  • Kandylis P, Koutinas AA (2008) Extremely low temperature fermentations of grape must by potatoes supported yeast-strain AXAZ-1. A contribution is performed to catalysis of alcoholic fermentation. J Agr Food Chem 56:3317–3327

    Article  CAS  Google Scholar 

  • Kandylis P, Goula A, Koutinas AA (2008) Corn starch gel for yeast cell entrapment. A view for catalysis of wine fermentation. J Agr Food Chem 56:12037–12045

    Article  CAS  Google Scholar 

  • Kandylis P, Manousi ME, Bekatorou A, Koutinas AA (2010a) Freeze-dried wheat supported biocatalyst for low temperature wine making. LWT-Food Sci Technol 43:1485–1493

    Article  CAS  Google Scholar 

  • Kandylis P, Drouza C, Bekatorou A, Koutinas AA (2010b) Scale-up of extremely low temperature fermentations of grape must by wheat supported yeast cells. Biores Technol 101:7484–7491

    Article  CAS  Google Scholar 

  • Kandylis P, Dimitrellou D, Koutinas AA (2012a) Winemaking by barley supported yeast cells. Food Chem 130:425–431

    Article  CAS  Google Scholar 

  • Kandylis P, Mantzari A, Koutinas AA, Kookos IK (2012b) Modelling of low temperature wine-making, using immobilized cells. Food Chem 133:1341–1348

    Article  CAS  Google Scholar 

  • Kanellaki M, Koutinas AA (1999) Low temperature fermentation by cold-adapted and immobilized yeast cells. In: Margesin R, Schinner F (eds) Biotechnological applications of cold-adapted organisms. Springer, Berlin, pp 118–145

    Google Scholar 

  • Kim SR, Park YC, Jin YS, Seo JH (2013) Strain engineering of Saccharomyces cerevisiae for enhanced xylose metabolism. Biotechnol Adv. doi:10.1016/j.biotechadv.2013.03.004

    Google Scholar 

  • Kishimoto M, Shinohara T, Soma E, Goto S (1993) Selection and fermentation properties of cryophilic wine yeasts. J Ferment Bioeng 75:451–453

    Article  CAS  Google Scholar 

  • Kondo K, Inouye M (1991) TIP1, a cold shock-inducible gene of Saccharomyces cerevisiae. J Biol Chem 266:17537–17544

    PubMed  CAS  Google Scholar 

  • Kopsahelis N, Kanellaki M, Bekatorou A (2007) Low temperature brewing using cells immobilized on brewer’s spent grains. Food Chem 104:480–488

    Article  CAS  Google Scholar 

  • Kopsahelis N, Nisiotou A, Kourkoutas Y, Panas P, Nychas GJE, Kanellaki M (2009) Molecular characterization and molasses fermentation performance of a wild yeast strain operating in an extremely wide temperature range. Biores Technol 100:4854–4862

    Article  CAS  Google Scholar 

  • Kourkoutas Y, Komaitis M, Koutinas AA, Kanellaki M (2001) Wine production using yeast immobilized on apple pieces at low and room temperatures. J Agr Food Chem 49:1417–1425

    Article  CAS  Google Scholar 

  • Kourkoutas Y, Koutinas AA, Kanellaki M, Banat IM, Marchant R (2002a) Continuous wine fermentation using a psychrophilic yeast immobilized on apple cuts at different temperatures. Food Microbiol 19:127–134

    Article  CAS  Google Scholar 

  • Kourkoutas Y, Douma M, Koutinas AA, Kanellaki M, Banat IM, Marchant R (2002b) Continuous winemaking fermentation using quince-immobilized yeast at room and low temperatures. Process Biochem 39:143–148

    Article  CAS  Google Scholar 

  • Kourkoutas Y, Komaitis M, Koutinas AA, Kaliafas A, Kanellaki M, Marchant R, Banat IM (2003a) Wine production using yeast immobilized on quince biocatalyst at temperatures between 30 and 0°C. Food Chem 82:353–360

    Article  CAS  Google Scholar 

  • Kourkoutas Y, Kanellaki M, Koutinas AA, Banat IM, Marchant R (2003b) Storage of immobilized yeast cells for use in wine-making at ambient temperature. J Agr Food Chem 51:654–658

    Article  CAS  Google Scholar 

  • Kourkoutas Y, Bekatorou A, Banat IM, Marchant R, Koutinas AA (2004) Immobilization technologies and support materials suitable in alcohol beverages production: a review. Food Microbiol 21:377–397

    Article  CAS  Google Scholar 

  • Kourkoutas Y, Kanellaki M, Koutinas AA, Tzia C (2005) Effect of fermentation conditions and immobilization supports on the wine-making. J Food Eng 69:115–123

    Article  Google Scholar 

  • Koutinas AA, Athanasiadis I, Bekatorou A, Psarianos C, Kanellaki M, Agouridis N, Blekas G (2007) Kefir-yeast technology: Industrial scale-up of alcoholic fermentation of whey, promoted by raisin extracts, using kefir-yeast granular biomass. Enzyme Microb Tech 41:576–582

    Article  CAS  Google Scholar 

  • Kowalski LR, Kondo K, Inouye M (1995) Cold-shock induction of a family of TIP1-related proteins associated with the membrane in Saccharomyces cerevisiae. Mol Microbiol 15:341–353

    Article  PubMed  CAS  Google Scholar 

  • Lee S, Villa K, Patino H (1995) Yeast strain development for enhanced production of desirable alcohols/esters in beer. J Am Soc Brew Chem 53:153–156

    CAS  Google Scholar 

  • Llaurado JM, Rozes N, Constanti M, Mas A (2005) Study of some Saccharomyces cerevisiae strains for winemaking after preadaptation at low temperatures. J Agr Food Chem 53:1003–1011

    Article  CAS  Google Scholar 

  • López-Malo M, Chiva R, Rozes N, Guillamon JM (2013) Phenotypic analysis of mutant and overexpressing strains of lipid metabolism genes in Saccharomyces cerevisiae: Implication in growth at low temperatures. Int J Food Microbiol 162:26–36

    Article  PubMed  CAS  Google Scholar 

  • Loukatos P, Kiaris M, Ligas I, Bourgos G, Kanellaki M, Komaitis M, Koutinas AA (2000) Continuous wine making by γ-alumina-supported biocatalyst. Appl Biochem Biotechnol 89:1–13

    Article  PubMed  CAS  Google Scholar 

  • Loukatos P, Kanellaki M, Komaitis M, Athanasiadis I, Koutinas AA (2003) A new technological approach proposed for distillate production using immobilized cells. J Biosci Bioeng 95:35–39

    PubMed  CAS  Google Scholar 

  • Mallios P, Kourkoutas Y, Iconomopoulou M, Koutinas AA, Psarianos C, Marchant R, Banat IM (2004) Low temperature wine making using yeast immobilized on pear pieces. J Sci Food Agr 84:1615–1623

    Article  CAS  Google Scholar 

  • Mallouchos A, Komaitis M, Koutinas AA, Kanellaki M (2003a) Wine fermentations by immobilized and free cells at different temperatures. Effect of immobilization and temperature on volatile by-products. Food Chem 80:109–113

    Article  CAS  Google Scholar 

  • Mallouchos A, Komaitis M, Koutinas AA, Kanellaki M (2003b) Evolution of volatile by products during wine fermentations using immobilized cells on grape skins. J Agr Food Chem 51:2402–2408

    Article  CAS  Google Scholar 

  • Mallouchos A, Skandamis P, Loukatos P, Komaitis M, Koutinas AA, Kanellaki M (2003c) Volatile compounds of wines produced by cells immobilized on grape skins. J Agr Food Chem 51:3060–3066

    Article  CAS  Google Scholar 

  • Mallouchos A, Loukatos P, Bekatorou A, Koutinas AA, Komaitis M (2007) Ambient and low temperature winemaking by immobilized cells on brewer’s spent grains: Effect on volatile composition. Food Chem 104:918–927

    Article  CAS  Google Scholar 

  • Masschelein CA, Ryder DS, Simon JP (1994) Immobilized cell technology in beer production. Crit Rev Biotechnol 14:155–177

    Article  CAS  Google Scholar 

  • Mattanovich D, Gasser B, Hohenblum H, Sauer M (2004) Stress in recombinant protein producing yeasts. J Biotechnol 113:121–135

    Article  PubMed  CAS  Google Scholar 

  • Murata Y, Homma T, Kitagawa E, Momose Y, Sato MS, Odani M, Shimizu H, Hasegawa-Mizusawa M, Matsumoto R, Mizukami S, Fujita K, Parveen M, Komatsu Y, Iwahashi H (2006) Genome-wide expression analysis of yeast response during exposure to 4 degrees C. Extremophiles 10:117–128

    Article  PubMed  CAS  Google Scholar 

  • Navarrete-Bolanos JL (2012) Improving traditional fermented beverages: How to evolve from spontaneous to directed fermentation. Eng Life Sci 12:410–418

    Article  CAS  Google Scholar 

  • Okuyama H, Morita N, Yumoto I (1999) Cold-adapted microorganisms for use in food biotechnology. In: Margesin R, Schinner F (eds) Biotechnological applications of cold-adapted organisms. Springer, Berlin, pp 101–115

    Chapter  Google Scholar 

  • Parapouli M, Hatziloukas E, Drainas C, Perisynakis A (2010) The effect of Debina grapevine indigenous yeast strains of Metschnikowia and Saccharomyces on wine flavour. J Ind Microbiol Biotechnol 37:85–93

    Article  PubMed  CAS  Google Scholar 

  • Penacho V, Valero E, Gonzalez R (2012) Transcription profiling of sparkling wine second fermentation. Int J Food Microbiol 153:176–182

    Article  PubMed  CAS  Google Scholar 

  • Pérez-Través L, Lopes CA, Barrio E, Querol A (2012) Evaluation of different genetic procedures for the generation of artificial hybrids in Saccharomyces genus for winemaking. Int J Food Microbiol 156:102–111

    Article  PubMed  CAS  Google Scholar 

  • Perpète P, Collin S (2000) How to improve the enzymatic worty flavour reduction in a cold contact fermentation. Food Chem 70:457–462

    Article  Google Scholar 

  • Pizarro FJ, Jewett MC, Nielsen J, Agosin E (2008) Growth temperature exerts differential physiological and transcriptional responses in laboratory and wine strains of Saccharomyces cerevisiae. Appl Environ Microbiol 74:6358–6368

    Article  PubMed  CAS  Google Scholar 

  • Plessas S, Bekatorou A, Koutinas AA, Soupioni M, Banat IM, Marchant R (2007) Use of Saccharomyces cerevisiae cells immobilized on orange peel as biocatalyst for alcoholic fermentation. Biores Technol 98:860–865

    Article  CAS  Google Scholar 

  • Pretorius IS, Bauer FF (2002) Meeting the consumer challenge through genetically customized wine-yeast strains. Trends Biotechnol 20:426–432

    Article  PubMed  CAS  Google Scholar 

  • Redon M, Guillamon JM, Mas A, Rozes N (2011) Effect of growth temperature on yeast lipid composition and alcoholic fermentation at low temperature. Eur Food Res Technol 232:517–527

    Article  CAS  Google Scholar 

  • Saerens SMG, Duong CT, Nevoigt E (2010) Genetic improvement of brewer’s yeast: current state, perspectives and limits. Appl Microbiol Biotechnol 86:1195–1212

    Article  PubMed  CAS  Google Scholar 

  • Sahara T, Goda T, Ohgiya S (2002) Comprehensive expression analysis of time-dependent genetic responses in yeast cells to low temperature. J Biol Chem 277:50015–50021

    Article  PubMed  CAS  Google Scholar 

  • Salvado Z, Arroyo-Lopez FN, Barrio E, Querol A, Guillamon JM (2011) Quantifying the individual effects of ethanol and temperature on the fitness advantage of Saccharomyces cerevisiae. Food Microbiol 28:1155–1161

    Article  PubMed  CAS  Google Scholar 

  • Salvado Z, Chiva R, Roze N, Cordero-Otero R, Guillamo JM (2012) Functional analysis to identify genes in wine yeast adaptation to low-temperature fermentation. J Appl Microbiol 113:76–88

    Article  PubMed  CAS  Google Scholar 

  • Sanchez RG, Solodovnikova N, Wendland J (2012) Breeding of lager yeast with Saccharomyces cerevisiae improves stress resistance and fermentation performance. Yeast 29:343–355

    Article  CAS  Google Scholar 

  • Sato M, Kishimoto M, Watari J, Takashio M (2002) Breeding of brewer’s yeast by hybridization between a top-fermenting yeast Saccharomyces cerevisiae and a cryophilic yeast Saccharomyces bayanus. J Biosci Bioeng 93:509–511

    PubMed  CAS  Google Scholar 

  • Schade B, Jansen G, Whiteway M, Entian KD, Thomas DY (2004) Cold adaptation in budding yeast. Mol Biol Cell 15:5492–5502

    Article  PubMed  CAS  Google Scholar 

  • Sipsas V, Kolokythas G, Kourkoutas Y, Plessas S, Nedovic VA, Kanellaki M (2009) Comparative study of batch and continuous Multi-Stage Fixed-Bed Tower (MFBT) bioreactor during wine-making using freeze-dried immobilized cells. J Food Eng 90:495–503

    Article  CAS  Google Scholar 

  • Steinkraus KH (1997) Classification of fermented foods: worldwide review of household fermentation techniques. Food Control 8:311–317

    Article  Google Scholar 

  • Thornton RJ (1982) Selective hybridization of pure culture wine yeasts II Improvement of fermentation efficiency and inheritance of SO2 tolerance. Eur J Appl Microbiol Biotechnol 14:159–164

    Article  CAS  Google Scholar 

  • Torija MJ, Beltran G, Novo M, Poblet M, Guillamon JM, Mas A, Rozes N (2003) Effects of fermentation temperature and Saccharomyces species on the cell fatty acid composition and presence of volatile compounds in wine. Int J Food Microbiol 85:127–136

    Article  PubMed  CAS  Google Scholar 

  • Torresi S, Frangipane MT, Anelli G (2011) Biotechnologies in sparkling wine production. Interesting approaches for quality improvement: A review. Food Chem 129:1232–1241

    Article  CAS  Google Scholar 

  • Tsakiris A, Sipsas V, Bekatorou A, Mallouchos A, Koutinas AA (2004a) Red wine making by immobilized cells and influence on volatile composition. J Agr Food Chem 52:1357–1363

    Article  CAS  Google Scholar 

  • Tsakiris A, Bekatorou A, Koutinas AA, Marchant R, Banat IM (2004b) Immobilization of yeast on dried raisin berries for use in dry white wine making. Food Chem 87:11–15

    Article  CAS  Google Scholar 

  • Tsakiris A, Kandylis P, Bekatorou A, Kourkoutas Y, Koutinas AA (2010) Dry red wine making using yeast immobilized on cork pieces. Appl Biochem Biotechnol 162:1316–1326

    Article  PubMed  CAS  Google Scholar 

  • Tsaousi Κ, Koutinas AA, Bekatorou A, Loukatos P (2010) Fermentation efficiency of cells immobilized on delignified brewers’ spent grains after low and high-temperature thin layer thermal drying. Appl Biochem Biotechnol 162:594–606

    Article  PubMed  CAS  Google Scholar 

  • Tsaousi K, Velli A, Akarepis F, Bosnea L, Drouza C, Koutinas AA, Bekatorou A (2011) Low-temperature winemaking by thermally dried immobilized yeast on delignified brewer’s spent grains. Food Technol Biotechnol 49:379–384

    CAS  Google Scholar 

  • Tsoutsas T, Kanellaki M, Psarianos C, Kaliafas A, Koutinas AA (1990) Kissiris: A mineral support for the promotion of ethanol fermentation by Saccharomyces cerevisiae. J Ferment Bioeng 69:93–97

    Article  CAS  Google Scholar 

  • Vlieg JETV, Veiga P, Zhang CH, Derrien M, Zhao LP (2011) Impact of microbial transformation of food on health - from fermented foods to fermentation in the gastro-intestinal tract. Current Opin Biotechnol 22:211–219

    Article  CAS  Google Scholar 

  • Watari J, Takata Y, Ogawa M, Nishikawa N, Kaminura M (1989) Molecular cloning of a flocculation gene in Saccharomyces cerevisiae plasmid DNA purification from E. coli culture. Agr Biol Chem 53:901–903

    Article  CAS  Google Scholar 

  • Yajima M, Yokotsuka K (2001) Volatile compound formation in white wines fermented using immobilized and free yeast. Am J Enol Viticult 52:210–218

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Kanellaki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kanellaki, M., Bekatorou, A., Koutinas, A.A. (2014). Low-Temperature Production of Wine, Beer, and Distillates Using Cold-Adapted Yeasts. In: Buzzini, P., Margesin, R. (eds) Cold-adapted Yeasts. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39681-6_19

Download citation

Publish with us

Policies and ethics