Adaptive Spatio-temporal Filtering of 4D CT-Heart

  • Mats Andersson
  • Hans Knutsson
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7944)


The aim of this project is to keep the x-ray exposure of the patient as low as reasonably achievable while improving the diagnostic image quality for the radiologist. The means to achieve these goals is to develop and evaluate an efficient adaptive filtering (denoising/image enhancement) method that fully explores true 4D image acquisition modes.

The proposed prototype system uses a novel filter set having directional filter responses being monomials. The monomial filter concept is used both for estimation of local structure and for the anisotropic adaptive filtering. Initial tests on clinical 4D CT-heart data with ECG-gated exposure has resulted in a significant reduction of the noise level and an increased detail compared to 2D and 3D methods. Another promising feature is that the reconstruction induced streak artifacts which generally occur in low dose CT are remarkably reduced in 4D.


adaptive filtering 4D image denoising low dose CT monomial filters 


  1. 1.
    Andersson, M.: Controllable Multidimensional Filters in Low Level Computer Vision. Ph.D. thesis, Linköping University, Sweden, SE-581 83 Linköping, Sweden (September 1992), dissertation No 282, ISBN 91-7870-981-4Google Scholar
  2. 2.
    Bigün, J.: Recognition of local symmetries in gray value images by harmonic functions. In: The 9th International Conference on Pattern Recognition, Rome, Italy (1988)Google Scholar
  3. 3.
    Bigün, J., Granlund, G.H.: Optimal orientation detection of linear symmetry. In: IEEE First International Conference on Computer Vision, London, Great Britain, pp. 433–438 (1987)Google Scholar
  4. 4.
    Bigün, J., Granlund, G.H.: Optical flow based on the inertia matrix of the frequency domain. In: Proceedings from SSAB Symposium on Picture Processing, SSAB, Lund University, Sweden (1988)Google Scholar
  5. 5.
    Buades, A., Coll, B., Morel, J.M.: A review of image denoising algorithms, with a new one. Multiscale Model Simul. 4, 490–530 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Eklund, A., Andersson, M., Knutsson, H.: True 4D image denoising on the GPU. International Journal of Biomedical Imaging, Article ID 952819 (2011)Google Scholar
  7. 7.
    Elad, M.: On the origin of the bilateral filter and ways to improve it. IEEE Transactions on Image Processing II(10), 1141–1151 (2003)Google Scholar
  8. 8.
    Farnebäck, G.: Polynomial Expansion for Orientation and Motion Estimation. Ph.D. thesis, Linköping University, Sweden, SE-581 83 Linköping, Sweden (2002) dissertation No 790, ISBN 91-7373-475-6Google Scholar
  9. 9.
    Felsberg, M., Jonsson, E.: Energy tensors: Quadratic, phase invariant image operators. In: Kropatsch, W.G., Sablatnig, R., Hanbury, A. (eds.) DAGM 2005. LNCS, vol. 3663, pp. 493–500. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Granlund, G.H., Knutsson, H.: Signal Processing for Computer Vision. Kluwer Academic Publishers (1995) ISBN 0-7923-9530-1Google Scholar
  11. 11.
    Johansson, B., Farnebäck, G.: A theoretical comparison of different orientation tensors. In: Proceedings SSAB 2002 Symposium on Image Analysis, SSAB, Lund, pp. 69–73 (2002)Google Scholar
  12. 12.
    Knutsson, H.: A tensor representation of 3-D structures. In: 5th IEEE-ASSP and EURASIP Workshop on Multidimensional Signal Processing, Noordwijkerhout, The Netherlands (September 1987) (poster presentation)Google Scholar
  13. 13.
    Knutsson, H.: Representing local structure using tensors. In: The 6th Scandinavian Conference on Image Analysis, Oulu, Finland, pp. 244–251 (June 1989); report LiTH–ISY–I–1019, Computer Vision Laboratory, Linköping University, Sweden (1989)Google Scholar
  14. 14.
    Knutsson, H., Andersson, M., Wiklund, J.: Advanced filter design. In: SCIA11. SCIA, Greenland (June 1999)Google Scholar
  15. 15.
    Knutsson, H., Haglund, L., Granlund, G.: Adaptive filtering of image sequences and volumes. In: Proceedings of International Conference on Automation, Robotics and Computer Vision, Singapore (September 1992)Google Scholar
  16. 16.
    Knutsson, H., Westin, C.F., Andersson, M.: Structure tensor estimation - introducing monomial quadrature filter sets. In: Laidlaw, D., Vilanova, A. (eds.) New Developments in the Visualization and Processing of Tensor Fields. Springer, Dagstuhl (2012)Google Scholar
  17. 17.
    Knutsson, H., Wilson, R., Granlund, G.H.: Anisotropic non-stationary image estimation and its applications — Part I: Restoration of noisy images. IEEE Transactions on Communications 31(3), 388–397 (1983)CrossRefGoogle Scholar
  18. 18.
    Köthe, U.: Inegrated edge and junction detection with the boundary tensor. In: Proceedings of Ninth IEEE International Conference on Computer Vision (ICCV) (2003)Google Scholar
  19. 19.
    Nordberg, K., Farnebäck, G.: Estimation of orientation tensors for simple signals by means of second-order filters. Signal Processing: Image Communication 20(6), 582–594 (2005)CrossRefGoogle Scholar
  20. 20.
    Perona, P.: Steerable-scalable kernels for edge detection and junction analysis. In: Sandini, G. (ed.) ECCV 1992. LNCS, vol. 588, pp. 3–18. Springer, Heidelberg (1992)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Mats Andersson
    • 1
  • Hans Knutsson
    • 1
  1. 1.Division of Medical Informatics, Department of Biomedical Engineering and Center for Medical Image Science and Visualization (CMIV)Linköping UniversityLinköpingSweden

Personalised recommendations