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Abstract. The aim of this project is to keep the x-ray exposure of the
patient as low as reasonably achievable while improving the diagnostic
image quality for the radiologist. The means to achieve these goals is to
develop and evaluate an efficient adaptive filtering (denoising/image en-
hancement) method that fully explores true 4D image acquisition modes.

The proposed prototype system uses a novel filter set having direc-
tional filter responses being monomials. The monomial filter concept is
used both for estimation of local structure and for the anisotropic adap-
tive filtering. Initial tests on clinical 4D CT-heart data with ECG-gated
exposure has resulted in a significant reduction of the noise level and an
increased detail compared to 2D and 3D methods. Another promising
feature is that the reconstruction induced streak artifacts which gener-
ally occur in low dose CT are remarkably reduced in 4D.

Keywords: adaptive filtering, 4D image denoising, low dose CT,
monomial filters.

1 Introduction

A problem of central importance in medical imaging is the balance between image
quality and ionizing radiation dose. A number of approaches can be attempted to
address this problem: Refined exposure control: A technique available in many
clinical scanners today is modulation of the tube current during the rotation,
so that the dose decreases in those slices and at those angular positions where
lower attenuation is expected and full exposure is not needed. In ECG-gated
cardiac CT, the tube current can be modulated during the cardiac cycle with
reduced radiation exposure during the systolic phase. Filtering the reconstructed
images: Applying filters after image reconstruction has not been widely used in
3D (or 4D). In spite of the fact that most cardiac CT-scanners generate 3D or
4D data the examination of the multidimensional data is generally performed by
examination of a series of 2D images. Most events in 4D data have a structure
that is one or two dimensional. The local structure of a moving heart wall is
intrinsically one dimensional (the 4D local structure tensor has rank 1) and a
tube structure like a vessel is two dimensional. Using true 4D denoising the
remaining dimensions provide a powerful base to filter out the noise.
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In relation to more recent methods such as e.g. non local means [5] and bilateral
filtering [7] adaptive filtering is here used for a 4D prototype system for medical
image enhancement for three reasons. 1)Computational efficiency. 2)The tuning
process is more or less straight forward. 3)The most important reason is however
that adaptive filtering has proved to bee extremely robust and is widely used in
clinical 2D (and 3D) applications.

2 The Power of Dimensionality, an Initial Experiment

In this experiment a synthetic 4D image is used to illustrate the power of adaptive
filtering with respect to dimensionality. To the top left in figure 1 a 2D image out
of the synthetic 4D volume is shown. The size of the 4D volume is 127×127×9×9
and the 4D test image has no signal variation in the last two dimensions. There
are three events that can be observed in this image: a large step close to the
diagonal, a thin white line and a shading from the upper left corner to the lower
right corner. Next the test image is degraded with a massive amount of 4D
additive noise. As all events in the test image share the same orientation the
adaptive filtering parameters can be set globally. The top right part of figure 1
shows the 4D filter kernel. The filter plot consists of 9 × 9 tiles where each tile
is of size 9 × 9 pixels. The first two 4D coordinates of the filter kernel specify
one of these tiles, the remaining two 4D coordinates refers to the position within
this tile.

By using corresponding subsets of the 4D data and the 4D filter, the result
from a 2D, a 3D and a 4D adaptive filtering approach is computed, figure 1. For
the 2D case a massive amount of noise remains, but some faint traces of the edge

Fig. 1. Top: a 2D slice of the synthetic 4D image, test image after degradation by 4D
noise, the global 4D enhancement filter kernel of size 94. Bottom: Result after 2D, 3D
and 4D adaptive filtering.
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and the shading can be discerned. In 3D the noise level is significantly reduced
but the white line is not discernible. In the 4D case the thin white line is clearly
visible and the nose is significantly reduced compared to 3D.

3 4D Adaptive Filtering

The basic principle behind adaptive filtering is to use a local anisotropic filter
synthesis originally referred to as steerable or controllable filters, [2,1,20]. The
method stresses the importance of locally 1D structures and was first imple-
mented for 2D images [17] and was later applied to 3D signals (volumes and
image sequences) in [15,10]. The 4D adaptive filtering method proposed here is
in some aspects a direct generalization of the concept for 2D and 3D adaptive
filtering described in [10]. There are, however, certain features that has to be
considered in the 4D case such as e.g. estimation of local structure and control
of anisotropic features in the adaptive filtering.

The local structure is generally represented by using a second order tensor.
Local structure analysis algorithms are quite complex and involve a lot more
than the filters used. This makes comparisons difficult to interpret [11,19]. Many
frequently used structure tensor estimation algorithms can be defined as sub-
sets of the monomial quadrature tensor proposed here, for example, the gradient
tensor [3,4], the boundary tensor [18], the energy tensor [9], spatial 2:nd order
polynome tensor [8].

The authors stress the importance of the magnitude of the local structure
tensor to be invariant to the phase of the signal. Alternative methods to compute
a 4D structure tensor can be used within the proposed concept and the control
tensor mappings below is valid for all structure tensors. Note however that the
definition of the monomial filters are of interest not only for estimation of local
structure but also for the directional properties of the adaptive filter set as
the computation of the resulting image becomes extremely simple this way, see
eq. 11.

The original phase invariant structure tensor T, first proposed in [12,13], is
computed from the magnitude of quadrature filter responses qk as T = qk Mk

where the projection tensors Mk are computed from the orientation of the
quadrature filters. In 4D this approach requires 10 or more quadrature filters
evenly distributed according to a regular polyhedron over one half of the Fourier
space. The only possible alternative is here the 24-cell which corresponds to
twelve 4D filter kernels. Using 10 or more complex valued 4D filters requires an
extreme computational effort for an evaluation on clinical data.

An alternative method to compute a local structure tensor while maintain-
ing the phase invariant property is to use monomial filters. The directional part
here consists of monomials i.e. products of positive integer powers of the com-
ponents of û. Performing n repeated outer products of û will contain all order
n component products.

û⊗n = û⊗ û ... ⊗ û
︸ ︷︷ ︸

n entities

(1)
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Consider first a simple 2D example where û = (u, v)T the monomial filter re-
sponse matrix of order one and two is for a simple signal with phase θ expressed
as:

Q1 = −i sin(θ) Ao (u, v)
T Q2 = cos(θ) Ao

(

u2 uv

uv v2

)

(2)

Computing the outer products of the filter response matrices and using the fact
that u2 + v2 = 1 results in

Q1 Q
T
1 = sin2(θ) |Ao|2

(

u2 uv

uv v2

)

Q2 Q
T
2 = cos2(θ) |Ao|2

(

u2 uv

uv v2

)

(3)

Finally the phase invariant second order 2D tensor T is obtained as:

T = Q1 Q
T
1 +Q2 Q

T
2 = |Ao|2

(

u2 uv

uv v2

)

(4)

where Ao is a function of the radial filter function R(ρ) and the signal amplitude.
The monomial filter matrices of order one and two are in the FD defined as

F 1n = R(ρ) ûn F 2mn = R(ρ) ûm ûn (5)

Note that although F 2 contain four entries the required number of second order
filters are three in 2D. Using filters of order one and two is the most computation-
ally efficient way compute a phase independent structure tensor from monomial
filters. The 2D concept above can be directly generalized to higher dimensions
and it is also possible to use higher order monomial filters, see [16]

In 4D the monomial filters of order one and two corresponds to 4 and 10
( real valued ) filters respectively compared to 12 complex valued filter in the
quadrature approach. In addition, due to more smooth directional properties,
monomial filters require a smaller spatial support compared to quadrature filters
using the same radial filter function in the FD which helps to preserve detail and
contrast in the processing. The radial filter function of the monomial filters R(ρ)
is lognormal with center frequency u0 = 3π/5 (where π is the Nyquist frequency)

Fig. 2. Original 4D data set, from left to right: axial, frontal and sagittal 2D planes
from low exposure part of heart cycle
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and a relative bandwidth β = 2.5 octaves. The filter kernels are optimized with
respect to, ideal frequency response, spatial locality and expected SNR [14]. The
clinical 4D data set is sampled in 20 points over the heart cycle. In relation to the
spatial resolution of 0.75mm3 voxels the temporal component (u4) is considered
to be under sampled by a factor of 3. To partly compensate for this under
sampling the u4 component of the filters is scaled by a factor of 1/3. This implies
that the radius in the FD is computed as ρ =

√

u2
1 + u2

2 + u2
3 + 1/9 u2

4. The 4D
coronar angio data set was captured using a Siemens SOMATOM Definition.
The size of the 4D data set is 512x512x446x20 4D voxels. During the image
acquisition the tube current is modulated over the cardiac cycle with reduced
radiation exposure during the systolic phase. In figure 2 an axial, frontal and
sagittal 2D slice of the 4D data set is shown for a low exposure part of the heart
cycle.

3.1 The Control Tensor, Mapping of Local Energy

A local structure second order tensor in 4D, computed according to eq. 4, is
positive definite and can be expressed as:

T =

4
∑

k=1

λk êkê
T
k λ1 ≥ λ2 ≥ λ3 ≥ λ4 ≥ 0 (6)

The tensor mimics the energy distribution in the FD and can pictured as a
4D ellipsoid where the extensions along the main axes, êk, are defined by the
corresponding eigen values λk. The eigen system defines the orientation of the
ellipsoid and the tensor magnitude ‖T‖ determines the amount of energy (or
contrast) in the local neighborhood. The result of the adaptive filtering is based
on a set of second order monomial filter responses. We denote the filter response
matrix of these enhancement filters H2. These filters are of high pass type and
the radial filter function tapers down to zero above the Nyquist frequency, (note
that the distance from the origin to a corner in the FD is 2π in 4D). For each
neighborhood a result is computed as a weighted summation of the high pass
filters plus one isotropic lowpass filter response, h0.

For smooth neighborhoods only the low pass filter is used. In this case the
low pass filter provide an efficient increase in the SNR without degrading any
structural information. When structure is present, it is on the other hand, of
outmost importance to maintain the high pass information in one ore more
orientations depending of the anisotrophy of the neighborhood. The core of the
adaptive filtering is to define how much of each of the high pass filter responses
to use for each individual neighborhood. For this purpose a control tensor, C,
is introduced. The control tensor and the local structure tensor share the same
eigen system but may differ in respect to magnitude and eigen value relations.
The mapping T to C is consequently made to minimize the distance between
the resulting adaptive filter and a local Wiener filter.

The mapping of local energy is performed according the γ-function to the top
left plot in figure 3. The x-axis of this plot corresponds to the tensor magnitude,
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Fig. 3. Top left: γ-map of local energy. Lower left: Estimated noise variance over the
heart cycle. Right: Resulting high pass map, the γ-image. See test for details.

√

tr(T)/|tr(T)|max, where the square root is due to the fact that the tensor
is quadratic with respect to the image intensity, see eq. 4. The low end of the
curve corresponds to a soft noise-threshold which is related to the estimated
SNR ratio of the image. In areas where the energy is below the threshold no high
pass filter will contribute substantially to the resulting image. The local energy
contribution in the mid-range of the γ-function corresponds to faint structures
in the image just above the noise threshold. The overshoot causes a compression
which increase the visibility of these weak structures. The right end of the γ-
function corresponds to high contrast events that are clearly visible without
further amplification.

The tuning processes of adaptive filtering is a matter of exploring optimal map-
ping parameters to the present image. For themagnitudemapping themost crucial
parameter is the noise threshold. For the present CT-data themapping of the noise
threshold is further complicated by two facts. 1) The tube current is modulated
over the heart cycle. The lower right part of figure 3 shows the estimated relative
noise variance over the heart cycle. 2)Due to the nature of X-ray imaging the SNR
also varies with the local intensity. Both these features are here compensated by
a local adaptation of the noise threshold, i.e. the low end of the γ-function in fig-
ure 3. The right part of figure 3 corresponds to the mapping of the local energy for
the axial slice of the test image. The intensity of the γ-image defines the amount
of high pass energy that will be contributed to the result.

3.2 The Control Tensor, Mapping of Local Anisotropy

The shape of the local tensor is determined by the relation of the eigen values.
In many applications the pairwise relation of the eigen values, λk+1/λk, is used
in the accessing and mapping of anisotropy. As opposed to 2D and 3D such
eigenvalue relations are more cumbersome in 4D as there is no direct way to solve
the secular equation. For this reason an alternative way to efficiently map the
degree of anisotropy in the denoising, based directly on the tensor components,
is proposed.
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Fig. 4. Left: Resulting mapping of anisotropy (λk+1/λk) for p = 4, n = 2 and m = 4.
Right: resulting energy independent anisotropy mapping, tr(C).

The anisotropic properties are mediated trough the control tensor, C. The
control tensor is computed from the local structure tensor, T, in an number of
steps. The initial step is to compute

C1 = T ‖Tp‖− 1
p (7)

The purpose here is to approximate a normalization of the control tensor with
respect to λ1 in eq. 6. Computing eq. 7 for p = 2n is an efficient operation and
for this case p = 4 or p = 8 is sufficient to put λ1 in the desired range. Next we
use the fact that C1 and I−C1, where I is the identity matrix, both are positive
definite and share the same eigen system.

C2 = Θ(n,C1) = Cn
1 + nCn

1 (I− C1) (8)

The Θ-mapping introduce a desired monotone sigma shaped mapping of the
λk+1/λk ratio in C2. The impact of this mapping is however considerable larger
for the low end of λk+1/λk ratio. To obtain a corresponding control of the upper
end of the λk+1/λk mapping we once more use the fact that C2 and I−C2 share
the same eigen system and compute:

C3 = I−Θ(m, I− C2) (9)

Note that both the mappings of eq. 8 and eq. 9 use exponents that are powers of
two (typically 4 and 8) which are efficient to compute. Figure 4 shows the effect
of the proposed anisotropy mapping. The three dashed curves show λk+1/λk for
C1 and the solid curves show the resulting relation for C3 using p = 4, n = 2
and m = 4. Note that so far this mapping is limited to the shape of the control
tensor. The final control tensor C is calculated by merging the shape mapping
of eq. 7-9 by the γ-mapping of the local tensor magnitude from the previous
section.

C = γ C3 (10)
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The denoised 4D image J can now be computed by the inner product of the
control tensor C, and the filter response matrix,H2, of the second order monomial
high pass filters and adding the filter response of the low pass filter h0.

J = h0 + 〈C,H2〉 (11)

3.3 Result

Upper part of figure 5 shows the result of the 4D adaptive filtering from a
normal dose part of the heart cycle. Note that the tuning here is extremely
cautious but the result has a clearly improved detail and contrast. The main
focus in the tuning process was here to level out the disturbing variation in
SNR induced by the gated exposure. The lower part of figure 5 shows the result
from a low dose part of the heart cycle. Note the difference in SNR between the

Original 4D Adaptive filtering

Fig. 5. Result from of 4D adaptive filtering. Upper: from a normal dose part of the
heart cycle. Lower: result from a low dose part of the heart cycle.
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Fig. 6. Volume rendering of original (left) and 4D denoised (right) CT-heart from a
normal exposure part of heart cycle. Note the increased visibility and detail of the
coronary arteries and other vessels.

original images (left) and the result of the adaptive filtering (right). Also note
that the reconstruction induced streaks which are mandatory in low dose CT are
significantly reduced. This effect is most likely due to the fact that the streaks
vary slightly over time due to motions of the heart and the patient.

In figure 6 a rendering of the original data and the result of the 4D algorithm is
illustrated. These images are from the low exposure part of the heart cycle. The
setting of the volume renderer is identical for both images. Note the improved
visibility of the coronary arteries and the surrounding vessels.
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8. Farnebäck, G.: Polynomial Expansion for Orientation and Motion Estimation.
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