Skip to main content

Consolidated Bioprocessing for Improving Cellulosic Ethanol Production

  • Chapter
  • First Online:
Lignocellulose Conversion

Abstract

Consolidated bioprocessing (CBP) is a potential system for reducing costs of production of bioethanol from lignocelluloses, combining hydrolysis and fermentation into a unique reactor, and exploiting the ability of engineered microorganisms to perform both the reactions. CBP would represent a breakthrough for low-cost biomass processing, due to economic benefits of process integration and, mainly, avoiding the high costs of the cellulolytic enzymes. This chapter discusses the progresses achieved in the development of both the CBP category I and category II, where CBP category I deals with engineering of a cellulase producer to make it ethanologenic and category II consists in engineering an ethanologenic microorganism to render it cellulolytic.

These authors contributed equally to the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Banat BMA, Hoshida H, Ano A, Nonklang S, Akada R (2010) High-temperature fermentation: how can processes for ethanol production at high temperatures become superior to the traditional process using mesophilic yeast? Appl Microbiol Biotechnol 85:861–867. doi:10.1007/s00253-009-2248-5

    PubMed  CAS  Google Scholar 

  • Amore A and Faraco V (2012) Potential of fungi as category I Consolidated BioProcessing organisms for cellulosic ethanol production. Renew Sust En Rev 16:3286–3301

    Google Scholar 

  • Amore A, Pepe O, Ventorino V, Birolo L, Giangrande C, Faraco V (2012b) Cloning and recombinant expression of a cellulase from the cellulolytic strain Streptomyces sp. G12 isolated from compost. Microbial cell factories 11(1):164

    Google Scholar 

  • Anderson PJ, McNeil K, Watson K (1986) High-efficiency carboidrate fermentation to ethanol at temperatures above 40°C by Kluyveromyces marxianus var. marxianus isolated from sugar mills. Appl Environ Microbiol 51:1314–1320

    PubMed  CAS  Google Scholar 

  • Bajpai P, Margaritis A (1987a) Kinetics of ethanol production by immobilized Kluyveromyces marxianus cells at varying sugar concentrations of Jerusalem artichoke juice. Appl Microbiol Biotechnol 26:447–449

    CAS  Google Scholar 

  • Bajpai P, Margaritis A (1987b) The effect of temperature and pH on ethanol production by free and immobilized cells of Kluyveromyces marxianus grown on Jerusalem artichoke extract. Biotechnol Bioeng 30:306–313

    PubMed  CAS  Google Scholar 

  • Ballesteros I, Oliva JM, Negro MJ, Manzanares P, Ballesteros M (2002a) Simultaneous saccharification and fermentation process for converting the cellulosic fraction of olive oil extraction residue into ethanol. Grasas Aceites 53:282–288

    CAS  Google Scholar 

  • Ballesteros M, Oliva JM, Manzanares P, Negro MJ, Ballesteros I (2002b) Ethanol production from paper material using a simultaneous saccharification and fermentation system in a fedbatch basis. World J Microbiol Biotechnol 18:559–561

    CAS  Google Scholar 

  • Ballesteros M, Oliva JM, Negro MJ, Manzanares P, Ballesteros I (2004) Ethanol from lignocellulosic materials by a simultaneous saccharification and fermentation process (SFS) with Kluyveromyces marxianus CECT 10875. Proc Biochem 39:1843–1848

    CAS  Google Scholar 

  • Banat IM, Nigam P, Marchant R (1992) Isolation of thermotolerant, fermentative yeasts growing at 52°C and producing ethanol at 45°C and 50°C. World J Microbiol Biotechnol 8:259–263

    CAS  Google Scholar 

  • Banat IM, Singh D, Marchant R (1996) The use of a thermotolerant fermentative Kluyveromyces marxianus IMB3 yeast strain for ethanol production. Acta Biotechnol 16:215–223

    CAS  Google Scholar 

  • Barron N, Marchant R, McHale L, McHale AP (1995) Studies on the use of a thermotolerant strain of Kluyveromyces marxianus in simultaneous saccharification and ethanol formation from cellulose. Appl Microbiol Biotechnol 43:518–520

    CAS  Google Scholar 

  • Barron N, Marchant R, McHale L, McHale AP (1996) Ethanol production from cellulose at 45°C using a batch-fed system containing alginate-immobilized Kluyveromyces marxianus IMB3. World J Microbiol Biotechnol 12:103–104

    CAS  Google Scholar 

  • Barron N, Mulholland H, Boyle M, McHale AP (1997) Ethanol production by Kluyveromyces marxianus IMB3 during growth on straw-supplemented whiskey distillery spentwash at 45°C. Bioproc Eng 17:383–386

    CAS  Google Scholar 

  • Becker J, Boles E (2003) A modified Saccharomyces cerevisiae strain that consumes L-arabinose and produces ethanol. Appl Environ Microbiol 69:4144–4150

    PubMed  CAS  Google Scholar 

  • Bellaver LH, de Carvalho NMB, Abrahão-Neto J, Gombert AK (2004) Ethanol formation and enzyme activities around glucose-6-phosphate in Kluyveromyces marxianus CBS 6556 exposed to glucose or lactose excess. FEMS Yeast Res 4:691–698

    Google Scholar 

  • Berger E, Zhang D, Zverlov VV, Schwarz WH (2007) Two noncellulosomal cellulases of Clostridiumthermocellum, Cel9I andCel48Y, hydrolyse crystalline cellulose synergistically. FEMS Microbiol Lett 268:194–201

    Google Scholar 

  • Blazhenko OV, Zimmermann M, Kang HA, Bartosz G, Penninckx MJ, Ubiyvovk VM, Sibirny AA (2006) Accumulation of cadmium ions in the methylotrophic yeast Hansenula polymorpha. BioMetals 19:593–599

    Google Scholar 

  • Bok JD, Yernool DA, Eveleigh DE (1998) Purification, characterization, and molecular analysis of thermostable cellulases CelA and CelB from Thermotoga neapolitana. Appl Environ Microbiol 64:4774–4781

    PubMed  CAS  Google Scholar 

  • Bokinsky G, Peralta-Yahya PP, George A (2011) Synthesis of three advanced biofuels from ionic liquid-pretreated switchgrass sng engineered Escherichia coli. Proc Nat Acad Sci USA 108(50):19949–19954

    Google Scholar 

  • Boyle M, Barron N, McHale AP (1997) Simultaneous saccharification and fermentation of straw to ethanol using the thermotolerant yeast strain Kluyveromyces marxianus IMB 3. Biotechnol Lett 19:49–51

    CAS  Google Scholar 

  • Brady D, Logan SR, McHale AP (1998) The effect of soluble alginate and calcium on β-galactosidase activity produced by the thermotolerant, ethanol-producing yeast strain Kluyveromyces marxianus IMB3. Bioproc Eng 18:101–104

    CAS  Google Scholar 

  • Brady D, Nigam P, Marchant R, McHale AP (1997a) Ethanol production at 45°C by alginate-immobilized Kluyveromyces marxianus IMB3 during growth on lactose-containing media. Bioproc Eng 16:101–104

    CAS  Google Scholar 

  • Brady D, Nigam P, Marchant R, McHale L, McHale AP (1996) Ethanol production at 45°C by Kluyveromyces marxianus IMB3 immobilized in magnetically responsive alginate matrices. Biotechnol Lett 18:1213–1216

    CAS  Google Scholar 

  • Brady D, Nigam P, Marchant R, Singh D, McHale AP (1997b) The effect of Mn2+ on ethanol production from lactose using Kluyveromyces marxianus IMB3 immobilized in magnetically responsive matrices. Bioproc Eng 17:31–34

    CAS  Google Scholar 

  • Brestic-Goachet N, Gunasekaran P, Cami B, Baratti JC (1989) Transfer and expression of an Erwinia chrysanthemi cellulase gene in Zymomonas mobilis. J Gen Microbiol 135:893–902

    Google Scholar 

  • Caballero R, Olguín P, Cruz-Guerrero A, Gallardo F, García-Garibay M, Gómez-Ruiz L (1995) Evaluation of Kluyveromyces marxianus as baker’s yeast. Food Res Int 28:37–41

    CAS  Google Scholar 

  • Cabeca-Silva C, Madiera-Lopes A (1984) Temperature relations of yield, growth and thermal death in the yeast Hansenula polymorpha. Z Allg Mikrobiol 24:129–132

    Google Scholar 

  • Chandrakant P, Bisaria VS (1998) Simultaneous bioconversion of cellulose and hemicellulose to ethanol. Crit Rev Biotechnol 18(4):295–331

    PubMed  CAS  Google Scholar 

  • Cho KM, Yoo YJ, Kang HS (1999) δ-Integration of endo/exo-glucanase and β-glucosidase genes into the yeast chromosomes for direct conversion of cellulose to ethanol. Enzyme Microb Technol 25:23–30

    CAS  Google Scholar 

  • Crous JM, Pretorius IS, van Zyl WH (1996) Cloning and expression of the α-L-arabinofuranosidase gene (ABF2) of Aspergillus niger in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 46(3):256–260

    Google Scholar 

  • Cruz-Guerrero A, Barzana E, Garcia-Garibay M, Gomez-Ruiz L (1999) Dissolved oxygen threshold for the repression of endopolygalacturonase production by Kluyveromyces marxianus. Process Biochem 34:621–624

    CAS  Google Scholar 

  • Deanda K, Zhang M, Eddy C, Picataggio S (1996) Development of an arabinose-fermenting Zymomonas mobilis strain by metabolic pathway engineering. Appl Environ Microbiol 62:4465–4470

    Google Scholar 

  • den Haan R, Rose SH, Lynd LR, van Zyl WH (2007a) Hydrolysis and fermentation of amorphous cellulose by recombinant Saccharomyces cerevisiae. Metab Eng 9:87–94

    Google Scholar 

  • Den Haan R, Van Zyl WH (2003) Enhanced xylan degradation and utilisation by Pichia stipitis overproducing fungal xylanolytic enzymes. Enzyme Microb Technol 33:620–628

    Google Scholar 

  • Den Haan R, McBride JE, La Grange DC, Lynd LR, Van Zyl WH (2007b) Functional expression of cellobiohydrolases in Saccharomyces cerevisiae towards onestep conversion of cellulose to ethanol. Enzyme Microb Technol 40:1291–1299

    Google Scholar 

  • Devaux M (2004) The cellulosome of Clostridium cellulolyticum. Enzyme Microb Tech 37:373–385

    Google Scholar 

  • Doi R (2008) Cellulases of mesophilic microorganisms—Cellulosome and noncellulosome producers. Ann NY Acad Sci 1125:267–279

    PubMed  CAS  Google Scholar 

  • Doi R, Park JS, Liu CC, Malburg LM, Tamaru Y, Ichiishi A, Ibrahim A (1998) Cellulosome and noncellulosomal cellulases of Clostridium cellulovorans. Extremophiles 2:53–60

    PubMed  CAS  Google Scholar 

  • Doi RH, Kosugi A, Murashima K, Tamaru Y, Han SO (2003) Cellulosomes from mesophilic bacteria. J Bacteriol 185:5907–5914

    PubMed  CAS  Google Scholar 

  • du Preez JC, Bosch M, Prior BA (1987) Temperature profiles of growth and ethanol tolerance of xylosefermenting yeasts Candida shehatae and Pichia stipitis. Appl Microbiol Biotechnol 25:521–525

    Google Scholar 

  • du Preez JC, Bosch M, Prior BA (1986) The fermentation of hexose sugars and pentose sugars by Candida shehatae and Pichia stipitis. Appl Microbiol Biotechnol 23:228–233

    Google Scholar 

  • Duvnjak Z, Houle C, Mok KL (1987) Production of ethanol and biomass from various carbohydrates by Kluyveromyces fragilis. Biotechnol Lett 9:343–346

    CAS  Google Scholar 

  • Edwards MC, De Crescenzo E, Yomano PL, Gardner BC, Sharma LN, Ingram LO, Peterson JD (2011) Addition of Genes for Cellobiase and Pectinolytic Activity in Escherichia coli for Fuel Ethanol Production from Pectin-Rich Lignocellulosic Biomass. App Env Microb 77(15):5184–5191

    Google Scholar 

  • Farkas V, Biely P, Bauer S (1973) Extracellular β-glucanases of the yeast Saccharomyces cerevisiae. Biochim Biophys Acta 321:246–255

    PubMed  CAS  Google Scholar 

  • Ferguson P, Mulholland H, Barron N, Brady D, McHale AP (1998) Sucrose-supplemented distillery spent-wash as a medium for production of ethanol at 45°C by free and alginate-immobilized preparations of Kluyveromyces marxianus IMB3. Bioproc Eng 18:257–259

    CAS  Google Scholar 

  • Fernanda R, Sa-Correia I (1992) Ethanol tolerance and activity of plasma membrane ATPase in Kluyveromyces marxianus and Saccharomyces cerevisiae. Enzyme Microb Technol 14:23–27

    Google Scholar 

  • Ferrari MD, Loperena L, Varela H (1994) Ethanol production from concentrated whey permeate using a fed-batch culture of Kluyveromyces fragilis. Biotechnol Lett 16:205–210

    CAS  Google Scholar 

  • Fierobe HP, Bayer EA, Tardif C, Czjzek M, Mechaly A, Belaich A, Lamed R, Shoham Y, Belaich JP (2008) Degradation of cellulose substrates by cellulosome chimeras. J Biol Chem 277:49621–49630

    Google Scholar 

  • Fierobe HP, Mingardon F, Mechaly A, Belaich A, Rincon M, Pages S, Lamed R, Tardif C, Belaich JP, Bayer EA (2005) Action of designer cellulosomes on homologous versus complex substrates. J Biol Chem 280:16325–16334

    PubMed  CAS  Google Scholar 

  • Fierobe HP, Pages S, Belaich A, Champ S, Lexa D, Belaich JP (1999) Cellulosome from Clostridium cellulolyticum: molecular study of the dockerin/cohesin interaction. Biochemistry 38:12822–12832

    PubMed  CAS  Google Scholar 

  • Fujio Y, Ogata M, Ueda S (1985) Ethanol fermentation of raw cassava starch with Rhizopus koji in a gas circulation type fermentor. Biotechnol Bioeng 27:1270–1273

    Google Scholar 

  • Fujita Y, Ito J, Ueda M, Fukuda H, Kondo A (2003) Synergistic saccharification, and direct fermentation to ethanol, of amorphous cellulose by use of an engineered yeast strain codisplaying three types of cellulolytic enzymes. Appl Environ Microbiol 70:1207–1212

    Google Scholar 

  • Fujita Y, Ito J, Ueda M, Fukuda H, Kondo A (2004) Synergistic saccharification, and direct fermentation to ethanol, of amorphous cellulose by use of an engineered yeast strain codisplaying three types of cellulolytic enzyme. Appl Environ Microbiol 70:1207–1212

    PubMed  CAS  Google Scholar 

  • Fujita Y, Takahashi S, Ueda M, Tanaka A, Okada H, Morikawa Y, Kawaguchi T, Arai M, Fukuda H, Kondo A (2002) Direct and efficient production of ethanol from cellulosic material with a yeast strain displaying cellulolytic enzymes. Appl Environ Microbiol 68:5136–5141

    PubMed  CAS  Google Scholar 

  • Galazka JM, Tian C, Beeson WT, Martinez B, Glass NL, Cate JH (2010) Cellodextrin transport in yeast for improved biofuel production. Science 330:84–86

    PubMed  CAS  Google Scholar 

  • Gibson DG (2009) Synthesis of DNA fragments in yeast by one-step assembly of overlapping oligonucleotides. Nucleic Acids Res 37:6984–6990

    PubMed  CAS  Google Scholar 

  • Golias H, Dumsday GJ, Stanley GA, Pamment NB (2002) Evaluation of a recombinant Klebsiella oxytoca strain for ethanol production from cellulose by simultaneous saccharification and fermentation: comparison with native cellobiose-utilising yeast strains and performance in co-culture with thermotolerant yeast and Zymomonas mobilis. J Biotech 96:155–168

    Google Scholar 

  • Gough S, Barron N, Zubov AL, Lozinsky VI, McHale AP (1998) Production of ethanol from molasses at 45°C using Kluyveromyces marxianus IMB3 immobilized in calcium alginate gels and poly(vinyl alcohol) cryogel. Bioproc Eng 19:87–90

    CAS  Google Scholar 

  • Gough S, Flynn O, Hack CJ, Marchant R (1996) Fermentation of molasses using a thermotolerant yeast, Kluyveromyces marxianus IMB3: simplex optimization of media supplements. Appl Microbiol Biotechnol 46:187–190

    PubMed  CAS  Google Scholar 

  • Gough S, McHale AP (1998) Continuous ethanol production from molasses at 45°C using alginate-immobilized Kluyveromyces marxianus IMB3 in a continuous-flow bioreactor. Bioproc Eng 19:33–36

    CAS  Google Scholar 

  • Grba S, Stehlik-Tomas V, Stanzer D, Vahěiě N, Škrlin A (2002) Selection of yeast strain Kluyveromyces marxianus for alcohol and biomass production on whey. Chem Biochem Eng Q 16:13–16

    Google Scholar 

  • Grubb CF, Mawson AJ (1993) Effects of elevated solute concentrations on the fermentation of lactose by Kluyveromyces marxianus Y-113. Biotechnol Lett 15:621–626

    CAS  Google Scholar 

  • Ha SJ, Galazka JM, Rin KS, Choi JH, Yang X, Seo JH, Louise GN, Cate JH, Jin YS (2011) Engineered Saccharomyces cerevisiae capable of simultaneous cellobiose and xylose fermentation. Proc Nat Acad Sci 108(2):504–509

    Google Scholar 

  • Hack CJ, Banat IM, Singh D, Marchant R (1994) Ethanol production by a strain of Kluyveromyces marxianus at elevated temperatures in various bioreactor configurations. In: Proceedings of conference on fermentation physiology, Institution of Chemical Engineers, Brighton, pp 7–9

    Google Scholar 

  • Hacking AJ, Taylor IWF, Hanas CM (1984) Selection of yeasts able to produce ethanol from glucose at 40°C. Appl Microbiol Biotechnol 19:361–363

    CAS  Google Scholar 

  • Hahn-Hägerdal B, Wahlbom CF, Gardonyi M, Van Zyl WH, Cordero OR, Jonsson LJ (2001) Metabolic engineering of Saccharomyces cerevisiae for xylose utilization. Adv Biochem Eng Biotechnol 73:53–84

    Google Scholar 

  • Hahn-Hägerdal B (1985) Comparison between immobilized Kluyveromyces fragilis and Saccharomyces cerevisiae coimmobilized with bgalactosidase, with respect to continuous ethanol production from concentrated whey permeate. Biotechnol Bioeng 27:914–916

    PubMed  Google Scholar 

  • Hensing MC, Rouwenhorst RJ, Heijnen JJ, van Dijken JP, Pronk JT (1995) Physiological and technological aspects of largescale heterologous-protein production with yeasts. Antonie Van Leeuwenhoek 67:261–279

    PubMed  CAS  Google Scholar 

  • Hensing MC, Vrouwenvelder H, Hellinga C, Baartmans R, van Dijken JP (1994) Production of extracellular inulinase in highcell-density fed-batch cultures of Kluyveromyces marxianus. Appl Microbiol Biotechnol 42:516–521

    CAS  Google Scholar 

  • Hinchliffe E (1984) Cloning and expression of a Bacillus subtilis endo-1, 3-1, 4-β- D-glucanase gene in Escherichia coli K12. J Gen Microb 130(5):1285–1291

    Google Scholar 

  • Ho NWY, Chen Z, Brainard A, Sedlak M (1999) Successful design and development of genetically engineered Saccharomyces yeasts for effective cofermentation of glucose and xylose from cellulosic biomass to fuel ethanol. Adv Biochem Eng Biotechnol 65:164–192

    Google Scholar 

  • Holtzapple M, Cognata M, Shu Y, Hendrickson C (1990) Inhibition of Trichoderma reesei cellulase by sugars and solvents. Biotechnol Bioeng 36:275–287

    Google Scholar 

  • Hong J, Tamaki H, Yamamoto K, Kumagai H (2003) Cloning of a gene encoding a thermo-stable endo-β-1,4-glucanase from Thermoascus aurantiacus and its expression in yeast. Biotechnol Lett 25:657–661

    PubMed  CAS  Google Scholar 

  • Hong J, Wang Y, Kumagai H, Tamaki H (2007) Construction of thermotolerant yeast expressing thermostable cellulase genes. J Biotechnol 130:114–123

    PubMed  CAS  Google Scholar 

  • Hughes DB, Tudrosaen NJ, Moye CJ (1984) The effect of temperature on the kinetics of ethanol production by a thermotolerant strain of Kluyveromyces marxianus. Biotechnol Lett 6:1–6

    CAS  Google Scholar 

  • Ilmen M, den Haan R, Brevnova E, McBride J, Wiswall E, Froehlich A, Koivula A, Voutilainen SP, Siika-Aho M, la Grange DC, Thorngren N, Ahlgren S, Mellon M, Deleault K, Rajgarhia V, van Zyl WH, Penttila M (2011) High level secretion of cellobiohydrolases by Saccharomyces cerevisiae. Biotechnol Biofuels 4:30

    PubMed  CAS  Google Scholar 

  • Ingram LO, Conway T, Clark DP, Sewell GW, Preston JF (1987) Genetic engineering of ethanol production in Escherichia coli. Appl Environ Microbiol 53:2420–2425

    Google Scholar 

  • Ingram LO, Gomez PF, Lai X, Moniruzzaman M, Wood BE, Yomano LP, York SW (1998) Metabolic engineering of bacteria for ethanol production. Biotechnol Bioeng 58:204–214

    Google Scholar 

  • Ishchuk OP, Voronovsky AY, Stasyk OV, Gayda GZ, Gonchar MV, Abbas CA, Sibirny AA (2008) Overexpression of pyruvate decarboxylase in the yeast Hansenula polymorpha results in increased ethanol yield in high-temperature fermentation of xylose. FEMS Yeast Res 8(7):1164–1174

    PubMed  CAS  Google Scholar 

  • Ishchuk OP, Abbas CA, Sibirny AA (2010) Heterologous expression of Saccharomyces cerevisiae MPR1 gene confers tolerance to ethanol and L: -azetidine-2-carboxylic acid in Hansenula polymorpha. J Ind Microbiol Biotechnol 37(2):213–218

    PubMed  CAS  Google Scholar 

  • Ishchuk OP, Voronovsky AY, Abbas CA, Sibirny AA (2009) Construction of Hansenula polymorpha strains with improved thermotolerance. Biotechnol Bioeng 104(5):911–919

    PubMed  CAS  Google Scholar 

  • Jeffries TW, Davis BP, Dahn K, Cho JY (1996) Genetic engineering of xylose fermentation in yeasts. USDA http://www2.biotech.wisc.edu/jeffries/bioprocessing/xoferm/xoferm.html. Accessed 26 Feb 2010

  • Jeffries TW, Grigoriev IV, Grimwood J, Laplaza JM, Aerts A, Salamov A, Schmutz J, Lindquist E, Dehal P, Shapiro H, Jin YS, Passoth V, Richardson PM (2007) Genome sequence of the lignocellulose-bioconverting and xylose-fermenting yeast Pichia stipitis. Nat Biotechnol 25:319–326

    PubMed  CAS  Google Scholar 

  • Jin M, Gunawan C, Balan V, Lau MW, Dale BE (2012) Simultaneous saccharification and co-fermentation (SSCF) of AFEXTM pretreated corn stover for ethanol production using commercial enzymes and Saccharomyces cerevisiae 424A(LNH-ST). Bioresour Technol 110:587–594

    Google Scholar 

  • Jones TD, Havard JM, Daugulis AJ (1993) Ethanol production from lactose by extractive fermentation. Biotechnol Lett 15:871–876

    CAS  Google Scholar 

  • Jung YH, Kim IJ, Kim HK, Kim KH (2013) Dilute acid pretreatment of lignocellulose for whole slurry ethanol fermentation. Bioresour Technol 132:109–114

    PubMed  CAS  Google Scholar 

  • Kádár ZS, Szengyel ZS, Réczey K (2004) Simultaneous saccharification and fermentation (SSF) of industrial wastes for the production of ethanol. Ind Crops Prod 20:103–110

    Google Scholar 

  • Karhumaa K, Wiedemann B, Hahn-Hagerdal B, Boles E, Gorwa-Grauslund MF (2006) Co-utilization of L-arabinose and D-xylose by laboratory and industrial Saccharomyces cerevisiae strains. Microb Cell Fact 5:18–28

    PubMed  Google Scholar 

  • Katahira S, Fujita Y, Mizuike A, Fukuda H, Kondo A (2004) Construction of a xylan-fermenting yeast strain through codisplay of xylanolytic enzymes on the surface of xylose-utilizing Saccharomyces cerevisiae cells. Appl Environ Microbiol 70:5407–5414

    PubMed  CAS  Google Scholar 

  • Kiers J, Zeeman AM, Luttik M, Thiele C, Castrillo JI, Steensma HY, van Dijken JP, Pronk JT (1998) Regulation of alcoholic fermentation in batch and chemostat cultures of Kluyveromyces lactis CBS 2359. Yeast 14:459–469

    PubMed  CAS  Google Scholar 

  • Kim JK, Tak KT, Moon JH (1998) A continuous fermentation of Kluyveromyces fragilis for the production of a highly nutritious protein diet. Aquac Eng 18:41–49

    Google Scholar 

  • Kitagawa T, Tokuhiro K, Sugiyama H, Kohda K, Isono N, Hisamatsu M, Takahashi H, Imaeda T (2010) Construction of a β-glucosidase expression system using the multistress-tolerant yeast Issatchenkia orientalis. Appl Microbiol Biotechnol 87(5):1841–1853

    PubMed  CAS  Google Scholar 

  • Kourkoutas Y, Dimitropoulou S, Kanellaki M, Marchant R, Nigam P, Banat IM, Koutinas AA (2002) High-temperature alcoholic fermentation of whey using Kluyveromyces marxianus IMB3 yeast immobilized on delignified cellulosic material. Biores Technol 82:177–181

    CAS  Google Scholar 

  • Krishna SH, Reddy TJ, Chowdary GV (2001) Simultaneous saccharification and fermentation of lignocellulosic wastes to ethanol using a thermotolerant yeast. Bioresour Technol 77:193–196

    CAS  Google Scholar 

  • Kuranda MJ, Robbins P (1987) Cloning and heterologous expression of glycosidase genes from Saccharomyces cerevisiae. Proc Natl Acad Sci USA 84:2585–2589

    PubMed  CAS  Google Scholar 

  • Kuyper M, Hartog MMP, Toirkens MJ, Almering MJH, Winkler AA, Van Dijken LP et al (2005) Metabolic engineering of a xylose-isomerase-expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation. FEMS Yeast Res 5:399–409

    PubMed  CAS  Google Scholar 

  • Kuyper M, Winkler AA, Van Dijken JP, Pronk JT (2004) Minimal metabolic engineering of Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: a proof of principle. FEMS Yeast Res 4:655–664. doi:10.1016/j.femsyr.2004.01.003

    PubMed  CAS  Google Scholar 

  • Kwon YJ, Ma AZ, Li Q, Wang F, Zhuang GQ, Liu CZ (2011) Effect of lignocellulosic inhibitory compounds on growth and ethanol fermentation of newly-isolated thermotolerant Issatchenkia orientalis. Bioresour Technol 102(17):8099–8104

    PubMed  CAS  Google Scholar 

  • La Grange DC, den Haan R, van Zyl WH (2010) Engineering cellulolytic ability into bioprocessing organisms. Appl Microbiol Biotechnol 87:1195–1208

    PubMed  CAS  Google Scholar 

  • La Grange DC, Pretorius IS, Van Zyl WH (1997) Cloning of the Bacillus pumilus β-xylosidase gene (xynB) and its expression in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 47:262–266

    Google Scholar 

  • La Grange DC, Claeyssens M, Pretorius IS, Van Zyl WH (2000) Coexpression of the Bacillus pumilus β-xylosidase (xynB) gene with the Trichoderma reesei beta xylanase 2 (xyn2) gene in the yeast Saccharomyces cerevisiae. Appl Microbiol Biotechnol 54(2):195–200

    Google Scholar 

  • La Grange DC, Pretorius IS, Van Zyl WH (1996) Expression and secretion of the Trichoderma reesei β-xylanase cDNA gene XYN2 in the yeast Saccharomyces cerevisiae. Appl Environ Microbiol 62:1036–1044

    PubMed  Google Scholar 

  • Lam TL, Wong RSC, Wong WKR (1997) Enhancement of extracellular production of a Cellulomonas fimi exoglucanase in Escherichia coli by the reduction of promoter strength. Enz Microb Techn 20(7):482–488

    Google Scholar 

  • Lark N, Xia YK, Qin CG, Gong CS, Tsao GT (1997) Production of ethanol from recycled paper sludge using cellulase and yeast Kluveromyces marxianus. Biomass Bioenerg 12:135–143

    CAS  Google Scholar 

  • Larriba G, Andaluz E, Gueva R, Basco RD (1995) Molecular biology of yeast exoglucanases. FEMS Microbiol Lett 125:121–126

    PubMed  CAS  Google Scholar 

  • Lee KJ, Lefebvre M, Tribe DE, Rogers PL (1980) High productivity ethanol fermentations with Zymomonas mobilis using continuous cell recycle. Biotechnol Lett 2:487–492

    Google Scholar 

  • Li MZ, Elledge SJ (2007) Harnessing homologous recombination in vitro to generate recombinant DNA via SLIC. Nat Methods 4:251–256

    PubMed  CAS  Google Scholar 

  • Linger JG, Adney WS, Darzins AL (2010) Heterologous Expression and Extracellular Secretion of Cellulolytic Enzymes by Zymomonas mobilis. App Env Microb 76(19):6360–6369

    Google Scholar 

  • Lilly M, Fierobe HP, van Zyl WH, Volschenk H (2009) Heterologous expression of a Clostridium minicellulosome in Saccharomyces cerevisiae. FEMS Yeast Res 9:1236–1249

    PubMed  CAS  Google Scholar 

  • Lodder J, Kreger-van Rij NJW (1952) The yeasts: a taxonomic study. NHPC, Amsterdam

    Google Scholar 

  • Love G, Gough S, Brady D, Barron N, Nigam P, Singh D, Marchant R, McHale AP (1998) Continuous ethanol fermentation at 45°C using Kluyveromyces marxianus IMB3. Immobilized in calcium alginate and kissiris. Bioproc Eng 18:187–189

    CAS  Google Scholar 

  • Love G, Nigam P, Barron N, Singh D, Marchant R, McHale AP (1996) Ethanol production at 45°C using preparations of Kluyveromyces marxianus IMB3 immobilized in calcium alginate and kissiris. Bioproc Eng 15:275–277

    CAS  Google Scholar 

  • Mannazzu I, Guerra E, Ferretti R, Pediconi D, Fatichenti F (2000) Vanadate and copper induce overlapping oxidative stress responses in the vanadate-tolerant yeast Hansenula polymorpha. Biochim Biophys Acta 1475:151–156

    Google Scholar 

  • Mannazzu I, Guerra E, Strabbioli R, Pediconi D, Fatichenti F (1998) The vanadate-tolerant yeast Hansenula polymorpha undergoes cellular reorganization during growth in, and recovery from, the presence of vanadate. Microbiology 144:2589–2597

    PubMed  CAS  Google Scholar 

  • Margaritis A, Bajpai P (1982) Direct fermentation of D-xylose to ethanol by Kluyveromyces marxianus strains. Appl Environ Microbiol 44:1039–1041

    PubMed  CAS  Google Scholar 

  • Marwaha SS, Kennedy JF, Sehgal VK (1988) Simulation of process conditions of continuous ethanol fermentation of whey permeate using alginate entrapped Kluyveromyces marxianus NCYC-179 cells in a packed-bed reactor system. Proc Biochem 23:17–22

    CAS  Google Scholar 

  • Moreno AD, Ibarra D, Ballesteros I, Gonzales A, Ballesteros M (2012) Comparing cell viability and ethanol fermentation of the thermotolerant yeast Kluyveromyces marxianus and Saccharomyces cerevisiae on steam-exploded biomass treated with laccase. Bioresour Technol http://dx.doi.org/10.1016/j.biortech.2012.11.095

  • Mosolova TP, Kalyuzhnyi SV, Varfolomeyev SD, Velikodvorskaya GA (1993) Purification and properties of Clostridium thermocellum endoglucanase 5 produced in Escherichia coli. Appl Biochem Biotechnol 42:9–18

    PubMed  CAS  Google Scholar 

  • Mrsa V, Klebl F, Tanner W (1993) Purification and characterization of the Saccharomyces cerevisiae BGL2 gene product, a cell wall endo-b-1,3-glucanase. J Bacteriol 175:2102–2106

    PubMed  CAS  Google Scholar 

  • Müller S, Sandal T, Kamp-Hansen P, Dalbøge H (1998) Comparison of expression systems in the yeasts Saccharomyces cerevisiae, Hansenula polymorpha, Klyveromyces lactis, Schizosaccharomyces pombe and Yarrowia lipolytica. Cloning of two novel promoters from Yarrowia lipolytica. Yeast 14:1267–1283

    PubMed  Google Scholar 

  • Muthukumar G, Suhng SH, Magee PT, Jewell RD, Primerano DA (1993) The Saccharomyces cerevisiae SPR1 gene encodes a sporulation-specific exo-1,3-beta-glucanase which contributes to ascospore thermoresistance. J Bacteriol 175(2):386–394

    PubMed  CAS  Google Scholar 

  • Nebreda AR, Villa TG, Villanueva JR, del Rey F (1986) Cloning of genes related to exo-β-glucanase production in Saccharomyces cerevisiae: characterization of an exo-β-glucanase structural gene. Gene 47:245–259

    PubMed  CAS  Google Scholar 

  • Nigam JN (2002) Bioconversion of water-hyacinth (Eichhornia crassipes) hemicellulose acid hydrolysate to motor fuel ethanol by xylose-fermenting yeast. J Biotechnol 97:107–116

    PubMed  CAS  Google Scholar 

  • Nigam P, Banat IM, Singh D, McHale AP, Marchant R (1997) Continuous ethanol production by thermotolerant Kluyveromyces marxianus IMB3 yeast immobilized on mineral kissiris at 45°C. World J Microbiol Biotechnol 13:283–288

    CAS  Google Scholar 

  • Nilsson U, Barron N, McHale L, McHale AP (1995) The effects of phosphoric and pretreatment on conversion of cellulose to ethanol at 45°C using the thermotolerant yeast Kluyveromyces marxianus IMB3. Biotechnol Lett 17:985–988

    CAS  Google Scholar 

  • Nissen TL, Kielland-Brandt MC, Nielsen J, Villadsen J (2000) Optimization of ethanol production in Saccharomyces cerevisiae by metabolic engineering of the ammonium assimilation. Metab Eng 2:69–77. doi:10.1006/mben.1999.0140

    PubMed  CAS  Google Scholar 

  • Nolan AM, Barron N, Brady D, McAree T, Smith D, McHale L, McHale AP (1994) Ethanol production at 45°C by an alginate immobilized strain of Kluyveromyces marxianus following growth on glucose-containing media. Biotechnol Lett 16:849–852

    CAS  Google Scholar 

  • Nombela C, Molina M, Cenamor R, Sanchez M (1988) Yeast β-glucanases: a complex system of secreted enzymes. Microbiol Sci 5(11):328–332

    Google Scholar 

  • Ohgren K, Bengtsson O, Gorwa-Grauslund MF, Galbe M, Hahn-Hägerdal B, Zacchi G (2006) Simultaneous saccharification and co-fermentation of glucose and xylose in steam-pretreated corn stover at high fiber content with Saccharomyces cerevisiae TMB340. J Biotechnol 126:488–498

    PubMed  Google Scholar 

  • Ohta K, Beall DS, Mejia JP, Shanmugam KT, Ingram LO (1991a) Genetic improvement of Escherichia coli for ethanol production: chromosomal integration of Zymomonas mobilis genes encoding pyruvate decarboxylase and alcohol dehydrogenase II. Appl Environ Microbiol 57:893–900

    Google Scholar 

  • Ohta K, Mejia JP, Shanmugam KT, Ingram LO (1991b) Metabolic engineering of Klebsiella oxytoca M5A1 for ethanol production from xylose and glucose. Appl Environ Microbiol 57:2810–2815

    Google Scholar 

  • Okamoto T, Yamano S, Ikeaga H, Nakamura K (1994) Cloning of the Acetobacter xylinum cellulase gene and its expression in Escherichia coli and Zymomonas mobilis. Appl Microb Biotech 42(4):563–568

    Google Scholar 

  • Oliva JM, Ballesteros I, Negro MJ, Manzanares P, Cabanas A, Ballesteros M (2004) Effect of binary combinations of selected toxic compounds on growth and fermentation of Kluyveromyces marxianus. Biotechnol Prog 20:715–720

    PubMed  CAS  Google Scholar 

  • Olofsson K, Palmqvist B, Lidén G (2010) Improving simultaneous saccharification and co-fermentation of pretreated wheat straw using both enzyme and substrate feeding. Biotechnol Biofuels 3:17

    PubMed  Google Scholar 

  • Panagiotu G, Villas-Boas SG, Christakopoulos P, Nielsen J, Olsson L (2005) Intracellular metabolite profiling of Fusarium oxysporum converting glucose to ethanol. J Biotechnol 115:425–434

    Google Scholar 

  • Papendieck A, Dahlems U, Gellissen G (2002) Technical enzyme production and whole-cell biocatalysis: application of Hansenula polymorpha. In: Gellissen G (ed) Hansenula polymorpha: biology and applications. Wiley-VCH, Weinham, p 255–271

    Google Scholar 

  • Park JS, Russell JB, Wilson DB (2007) Characterization of a family 45 glycosyl hydrolase from Fibrobacter succinogenes S85. Anaerobe 13:83–88

    Google Scholar 

  • Park SC, Kademi A, Baratti JC (1993) Alcoholic fermentation of cellulose hydrolysate by Zymomonas mobilis. Biotechnol Lett 15:1179–1184

    Google Scholar 

  • Passador-Gurgel GC, Furlan SA, Meller JK, Jonas R (1996) Application of a microtitre reader system to the screening of inulinase-producing yeasts. Appl Microbiol Biotechnol 45:158–161

    CAS  Google Scholar 

  • Pecota DC, Da Silva NA (2005) Evaluation of the tetracycline promoter system for regulated gene expression in Kluyveromyces marxianus. Biotechnol Bioeng 92:117–123

    PubMed  CAS  Google Scholar 

  • Pentillä ME, Nevalainen KMH, Raynal A, Knowles JKC (1984) Cloning of Aspergillus niger genes in yeast. Expression of the gene encoding Aspergillus β-glucosidase. Mol Gen Genet 194:494–499

    Google Scholar 

  • Penttilä ME, Andre L, Lehtovaara P, Bailey M, Teeri TT, Knowles JK (1988) Efficient secretion of two fungal cellobiohydrolases by Saccharomyces cerevisiae. Gene 63:103–112

    PubMed  Google Scholar 

  • Piotek M, Hagedorn J, Hollenberg CP, Gellissen G, Srasser AWM (1998) Two novel gene expression systems based on the yeasts Schwanniomyces occidentalis and Pichia stipitis. Appl Microbiol Biotechnol 50:331–338

    Google Scholar 

  • Piriya P, Thirumalai Vasan P, Padma VS, Vidhyadevi U, Archana K and Vennison SJ (2012) Cellulosic Ethanol Production by Recombinant Cellulolytic Bacteria Harbouring pdc and adh II Genes of Zymomonas mobilis. Biotechnol Res Int Article ID 817549

    Google Scholar 

  • Pushalkar S, Rao KK (1998) Short communication: ethanol fermentation by a cellulolytic fungus Aspergillus terreus. World J Microbiol Biotechnol 14:289–291

    Google Scholar 

  • Rajoka MI, Latif F, Khan S, Shahid R (2004) Kinetics of improved productivity of β-galactosidase by a cycloheximide-resistant mutant of Kluyveromyces marxianus. Biotechnol Lett 26:741–746

    PubMed  CAS  Google Scholar 

  • Rajoka MI, Khan S, Shahid R (2003) Kinetics and regulation studies of the production of β-galactosidase from Kluyveromyces marxianus grown on different substrates. Food Technol Biotechnol 41:315–320

    CAS  Google Scholar 

  • Rasmussen MA, Hespell RB, White BA, Bothast RJ (1988) Inhibitory effects of methylcellulose on cellulose degradation by Ruminococcus flavefaciens. Appl Environ Microbiol 54:890–897

    PubMed  CAS  Google Scholar 

  • Riordan C, Love G, Barron N, Nigam P, Marchant R, McHale L, McHale AP (1996) Production of ethanol from sucrose at 45°C by alginate immobilized preparations of the thermotolerant yeast strain Kluyveromyces marxianus IMB3. Biores Technol 55:171–173

    CAS  Google Scholar 

  • Romero S, Merino E, Bolivar F, Gosset G, Martinez A (2007) Metabolic engineering of Bacillus subtilis for ethanol production: lactate dehydrogenase plays a key role in fermentative metabolism. Appl Environ Microbiol 73:5190–5198

    Google Scholar 

  • Rosa FM, Sa-Correia I (1992) Ethanol tolerance and activity of plasma membrane ATPase in Kluyveromyces marxianus and Saccharomyces cerevisiae. Enzyme Microb Technol 14:23–27

    CAS  Google Scholar 

  • Rouwenhorst RJ, Visser LE, van der Baan AA, Scheffers WA, van Dijken JP (1988) Production, distribution, and kinetic properties of inulinase in continuous culture of Kluyveromyces marxianus CBS 6556. Appl Environ Microbiol 54:1131–1137

    Google Scholar 

  • Ryabova OB, Chmil OM, Sibirny AA (2003) Xylose and cellobiose fermentation to ethanol by the thermotolerant methylotrophic yeast Hansenula polymorpha. FEMS Yeast Res 4(2):157–164

    Google Scholar 

  • Sadie CJ, Rose SH, Den Haan R, Van Zyl WH (2011) Co-expression of a cellobiose phosphorylase and lactose permease enables intracellular cellobiose utilisation by Saccharomyces cerevisiae. Appl Microbiol Biotechnol 90(4):1373–1380

    Google Scholar 

  • Sakamoto T, Hasunuma T, Hori Y, Yamada R, Kondo A.(2012) Direct ethanol production from hemicellulosic materials of rice straw by use of an engineered yeast strain codisplaying three types of hemicellulolytic enzymes on the surface of xylose-utilizing Saccharomyces cerevisiae cells. J Biotechnol 158(4):203–210

    Google Scholar 

  • Sakanaka K, Yan W, Kishida M, Sakai T (1996) Breeding a fermentative yeast at high temperature using protoplast fusion. J Ferment Bioeng 81:104–108

    CAS  Google Scholar 

  • San Segundo P, Correa J, Vazquez de Aldana CR, del Rey F (1993) SSG1, a gene encoding a sporulation-specific 1,3-beta-glucanase in Saccharomyces cerevisiae. J Bacteriol 175(12):3823–3837

    Google Scholar 

  • Schultz N, Chang L, Hauck A, Reuss M, Syldatk C (2006) Microbial production of single-cell protein from deproteinized whey concentrates. Appl Microbiol Biotechnol 69:515–520

    PubMed  CAS  Google Scholar 

  • Schwan RF, Rose AH (1994) Polygalacturonase production by Kluyveromyces marxianus: effect of medium composition. J Appl Bacteriol 76:62–67

    CAS  Google Scholar 

  • Serrat M, Bermudez RC, Villa TG (2004) Polygalacturonase and ethanol production in Kluyveromyces marxianus—potential use of polygalacturonase in foodstuffs. Appl Biochem Biotechnol 117:49–64

    PubMed  CAS  Google Scholar 

  • Shao ZY, Zhao H, Zhao HM (2009) DNA assembler, an in vivo genetic method for rapid construction of biochemical pathways. Nucleic Acids Res 37:e16

    PubMed  Google Scholar 

  • Shin HD, McClendon S, Vo T, Chen RR (2010) Escherichia coli Binary Culture Engineered for Direct Fermentation of Hemicellulose to a Biofuel. App Env Microb 76(24):8150–8159

    Google Scholar 

  • Singh D, Nigam P, Banat IM, Marchant R, McHale AP (1998) Ethanol production at elevated temperatures and alcohol concentrations. Part II. Use of Kluyveromyces marxianus IMB3. World J Microbiol Biotechnol 14:823–834

    CAS  Google Scholar 

  • Skory CD, Freer SN, Bothast RJ (1997) Screening for ethanol producing filamentousfungi. Biotechnol Lett 19:203–206

    Google Scholar 

  • Slinger PJ, Bothast RJ, van Cauwenberge JE, Kurtzman CP (1982) Conversion of D-xylose to ethanol by the yeast Pachysolen tannophilus. Biotechnol Bioeng 24:371–384

    Google Scholar 

  • Soleimani S, Ghasemi MF, Shokri S (2012) Ethanol production by Zymomonas mobilis PTCC 1718 using low cost substrates. Afr J Microb Res 6(4):704–712

    Google Scholar 

  • Steensma HY, de Jongh FCM, Linnekamp M (1988) The use of electrophoretic karyotypes in the classification of yeasts: Kluyveromyces marxianus and K. lactis. Curr Genet 14:311–317

    CAS  Google Scholar 

  • Stevenson DM, Weimer PJ (2002) Isolation and characterization of a Trichodermastrain capable of fermenting cellulose to ethanol. Appl Microbiol Biotechnol 59:721–726

    Google Scholar 

  • Swinkels BW, van Ooyen AJJ, Bonekamp FJ (1993) The yeast Kluveromyces lactis as an efficient host for heterologous gene expression. Antonie Van Leeuwenhoek 64:187–201

    PubMed  Google Scholar 

  • Takada G, Kawaguchi T, Sumitani J, Arai M (1998) Expression of Aspergillus aculeatus no. F-50 cellobiohydrolase I (cbhI) and β-glucosidase 1 (bgl1) genes by Saccharomyces cerevisiae. Biosci Biotechnol Biochem 62:1615–1618

    PubMed  CAS  Google Scholar 

  • Teng C, Jia H, Yan Q, Zhou P, Jiang Z (2011) High-level expression of extracellular secretion of a b-xylosidase gene from Paecilomyces thermophila in Escherichia coli. Biores Tech 102:1822–1830

    Google Scholar 

  • Tin CSF, Mawson AJ (1993) Ethanol production from whey in a membrane recycle bioreactor. Proc Biochem 28:217–221

    CAS  Google Scholar 

  • Tomás-Pejó E, Oliva JM, Ballesteros M, Olsson L (2008) Comparison of SHF and SSF processes from steam-exploded wheat straw for ethanol production by xylose-fermenting and robust glucose-fermenting Saccharomyces cerevisiae strains. Biotechnol Bioeng 100:6

    Google Scholar 

  • Tomás-Pejó E, García-Aparicio M, Negro MJ, Oliva JM, Ballesteros M (2009) Effect of different cellulase dosages on cell viability and ethanol production by Kluyveromyces marxianus in SSF processes. Bioresour Technol 100:890–895. doi:10.1016/j.bior tech.2008.07.012

    Google Scholar 

  • Tsai SL, Oh J, Singh S, Chen RZ, Chen W (2009) Functional assembly of minicellulosomes on the Saccharomyces cerevisiae cell surface for cellulose hydrolysis and ethanol production. Appl Environ Microbiol 75:6093

    Google Scholar 

  • van den Berg JA, van der Laken KJ, van Ooyen AJJ et al (1990) Kluyveromyces as a host for heterologous gene expression. Expression and secretion of prochymosin. BioTechnology 8:135–139

    PubMed  Google Scholar 

  • van Dijken JP, Weusthuis RA, Pronk JT (1993) Kinetics of growth and sugar consumption in yeast. Antonie Van Leeuwenhoek 63:343–352

    PubMed  Google Scholar 

  • Van Dijken JP et al (2000) An interlaboratory comparison of physiological and genetic properties of four Saccharomyces cerevisiae strains. Enzyme Microb Technol 26:706–714. doi:10.1016/S0141-0229(00)00162-9

    PubMed  Google Scholar 

  • Van Rensburg P, Van Zyl WH, Pretorius IS (1998) Engineering yeast for efficient cellulose degradation. Yeast 14:67–76

    Google Scholar 

  • Van Rensburg P, Van Zyl WH, Pretorius IS (1997) Over-expression of the Saccharomyces cerevisiae exo-a-1,3-glucanase gene together with the Butyrivibrio fibrisolvens endo-β-1,4-glucanase and the Bacillus subtilis endo-β-1,3–1,4-glucanase gene in yeast. J Biotechnol 55:43–53

    PubMed  Google Scholar 

  • Van Rooyen R, Hahn-Hagerdal B, La Grange DC, Van Zyl WH (2005) Construction of cellobiose-growing and fermenting Saccharomyces cerevisiae strains. J Biotechnol 120:284–295

    PubMed  Google Scholar 

  • van Uden N (1984) Temperature profiles of yeasts. Adv Microb Physiol 25:195–248

    PubMed  Google Scholar 

  • van Urk H, Voll WSL, Scheffers WA, van Dijken JP (1990) Transient-state analyses of metabolic fluxes in Crabtree-positive and Crabtree-negative yeasts. Appl Environ Microbiol 56:281–287

    PubMed  Google Scholar 

  • van Zyl WH, den Haan R, la Grange DC(2011) Developing organisms for consolidated bioprocessing of biomass to ethanol. In: Aurélio dos Santos Bernardes M (ed) Biofuel production-recent developments and prospects, ISBN 978-953-307-478-8, InTech

    Google Scholar 

  • Van Zyl WH, Lynd LR, den Haan R, McBride JE (2007) Consolidated bioprocessing for bioethanol production using Saccharomyces cerevisiae. Adv Biochem Eng Biotechnol 108:205–235

    PubMed  Google Scholar 

  • Verduyn C, Postma E, Scheffers WA, van Dijken JP (1992) Effect of benzoic acid on metabolic fluxes in yeasts: a continuous-culture study on the regulation of respiration and alcoholic fermentation. Yeast 8:501–517

    PubMed  CAS  Google Scholar 

  • Voronovsky AY, Rohulya OV, Abbas CA, Sibirny AA (2009) Development of strains of the thermotolerant yeast Hansenula polymorpha capable of alcoholic fermentation of starch and xylan. Metab Eng 11:234–242

    PubMed  CAS  Google Scholar 

  • Ward C, Nolan AM, O’Hanlon F, McAree T, Barron N, McHale L, McHale AP (1995) Production of ethanol at 45°C on starchcontaining media by mixed cultures of the thermotolerant, ethanol-producing yeast Kluyveromyces marxianus IMB3 and the thermophilic filamentous fungus Talaromyces emersonii CBS 813.70. Appl Microbiol Biotechnol 43:408–411

    CAS  Google Scholar 

  • Watanabe T, Watanabe I, Yamamoto M, Ando A, Nakamura T (2011) A UV-induced mutant of Pichia stipitis with increased ethanol production from xylose and selection of a spontaneous mutant with increased ethanol tolerance. Bioresour Technol 102(2):1844–1848

    Google Scholar 

  • Wen F, Sun J, Zhao HM (2010) Yeast surface display of trifunctional minicellulosomes for simultaneous saccharification and fermentation of cellulose to ethanol. Appl Environ Microbiol 76:1251–1260

    PubMed  CAS  Google Scholar 

  • Wolf K, Breunig K, Barth G (2003) (eds) Non-conventional yeasts in genetics, biochemistry and biotechnology. Springer, Berlin

    Google Scholar 

  • Wood BE, Beall DS, Ingram LO (1997) Production of recombinant bacterial endoglucanase as a co-product with ethanol during fermentation using derivatives of escherichia coli KO11. Biotech Bioeng 55(3):547–555

    Google Scholar 

  • Wood Be, Ingram Lo (1992) Ethanol production from cellobiose, amorphous cellulose, and crystalline cellulose by recombinant klebsiella oxytoca containing chromosomally integrated zymomonas mobilis genes for ethanol production and plasmids expressing thermostable cellulase genes from clostridium thermocellum. App Env Microb 58(7):2103–2110

    Google Scholar 

  • Xu Q, Singh A, Himmel ME (2009) Perspectives and new directions for the production of bioethanol using consolidated bioprocessing of lignocellulose. Curr Opin Biotechnol 20:364–371

    Google Scholar 

  • Yamada R, Taniguchi N, Tanaka T, Ogino C, Fukuda H, Kondo A (2011) Direct ethanol production from cellulosic materials using a diploid strain of Saccharomyces cerevisiae with optimized cellulase expression. Biotechnol Biofuels 4:8

    Google Scholar 

  • Yamada T, Fatigati MA, Zhang M (2002) Performance of immobilized Zymomonas mobilis 31821 (pZB5) on actual hydrolysates produced by Arkenol Technology. Appl Biochem Biotech 98:899–907

    Google Scholar 

  • Yanase S, Hasunuma T, Yamada R, Tanaka T, Ogino C, Fukuda H, Kondo A (2010) Direct ethanol production from cellulosic materials at high temperature using the thermotolerant yeast Kuyveromyces marxianus displaying cellulolytic enzymes. Appl Microbiol Biotechnol 88:381–388

    PubMed  CAS  Google Scholar 

  • Yanase H, Nozaki K, Okamoto K (2005) Ethanol production from cellulosic materials by genetically engineered Zymomonas mobilis. Biotechnol Lett 27:259–263

    Google Scholar 

  • Yoo JS, Jung Yj, Chung SY, Lee YC, Choi YL (2004) Molecular Cloning and Characterization of CMCase gene (celC) from Salmonella typhimurium UR. J Microb 42(3):205–210

    Google Scholar 

  • Yoon KH, Park SH, Pack MY (2007) Transfer of Bacillus subtilis endo-β-1, 4-glucanase gene into Zymomonas anaerobia. Biotech Lett 10(3):213–216

    Google Scholar 

  • Yuan WJ, Chang BL, Ren JG, Liun JP, Bai FW, Li YY (2011) Consolidated bioprocessing strategy for ethanol production from Jerusalem artichoke tubers by Kluyveromyces marxianus under high gravity conditions. J Appl Microbiol 112:38–44

    PubMed  Google Scholar 

  • Zhang M, Eddy C, Deanda K, Finkestein M, Picataggio S (1995a) Metabolic engineering of a pentose metabolism pathway in ethanologenic Zymomonas mobilis. Science 267:240–243

    Google Scholar 

  • Zhang M, Franden MA, Newman M, Mcmillan J, Finkelstein M, Picataggio S (1995b) Promising ethanologens for xylose fermentation. Appl Biochem Biotechnol (51-52):527–536

    Google Scholar 

  • Zhou S, Ingram LO (2001) Engineering endoglucanase-secreting strains of ethanologenic Klebsiella oxytoca P2. J Ind Microbiol Biot 22:600–607

    Google Scholar 

  • Zhou S, Yomano LP, Saleh AZ, Davis FC, Aldrich HC, Ingram O (1999) Enhancement of expression and apparent secretion of Erwinia chrysanthemi endoglucanase (encoded by celZ) in Escherichia coli B. Appl Envir Microb 65(6):2439–2445

    Google Scholar 

Download references

Acknowledgments

This work was supported by grant from the Ministero dell’Università e della Ricerca Scientifica-Industrial Research Project “Integrated agro-industrial chains with high energy efficiency for the development of eco-compatible processes of energy and biochemicals production from renewable sources and for the land valorization (EnerbioChem)” PON01_01966, funded in the frame of Operative National Programme Research and Competitiveness 2007–2013 D. D. Prot. n. 01/Ric. 18.1.2010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincenza Faraco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Amore, A., Giacobbe, S., Faraco, V. (2013). Consolidated Bioprocessing for Improving Cellulosic Ethanol Production. In: Faraco, V. (eds) Lignocellulose Conversion. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37861-4_9

Download citation

Publish with us

Policies and ethics