Skip to main content

RNA Interference-Mediated Intrinsic Antiviral Immunity in Invertebrates

  • Chapter
  • First Online:
Intrinsic Immunity

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 371))

Abstract

In invertebrates such as insects and nematodes, RNA interference (RNAi) provides RNA-based protection against viruses. This form of immunity restricts viral replication and dissemination from infected cells and viruses, in turn, have evolved evasion mechanisms or RNAi suppressors to counteract host defenses. Recent advances indicate that, in addition to RNAi, other related small RNA pathways contribute to antiviral functions in invertebrates. This has led to a deeper understanding of fundamental aspects of small RNA-based antiviral immunity in invertebrates and its contribution to viral spread and pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aliyari R, Ding S-W (2009) RNA-based viral immunity initiated by the Dicer family of host immune receptors. Immunol Rev 227:176–188

    Article  PubMed  CAS  Google Scholar 

  • Aliyari R, Wu Q, Li HW, Wang XH, Li F, Green LD, Han CS, Li WX, Ding SW (2008) Mechanism of induction and suppression of antiviral immunity directed by virus-derived small RNAs in Drosophila. Cell Host Microbe 4:387–397

    Article  PubMed  CAS  Google Scholar 

  • Attarzadeh-Yazdi G, Fragkoudis R, Chi Y, Siu RWC, Ãœlper L, Barry G, Rodriguez-Andres J, Nash AA, Bouloy M, Merits A, Fazakerley JK, Kohl A (2009) Cell-to-cell spread of the RNA interference response suppresses Semliki Forest virus (SFV) infection of mosquito cell cultures and cannot be antagonized by SFV. J Virol 83:5735–5748

    Article  PubMed  CAS  Google Scholar 

  • Baltimore D, Girard M (1966) An intermediate in the synthesis of poliovirus RNA. Proc Natl Acad Sci USA 56:741

    Article  PubMed  CAS  Google Scholar 

  • Beckham CJ, Parker R (2008) P bodies, stress granules, and viral life cycles. Cell Host Microbe 3:206–212

    Article  PubMed  CAS  Google Scholar 

  • Behm-Ansmant I, Rehwinkel J, Doerks T, Stark A, Bork P, Izaurralde E (2006) mRNA degradation by miRNAs and GW182 requires both CCR4:NOT deadenylase and DCP1:DCP2 decapping complexes. Genes Dev 20:1885–1898

    Article  PubMed  CAS  Google Scholar 

  • Bernstein E, Caudy AA, Hammond SM, Hannon GJ (2001) Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409:363–365

    Article  PubMed  CAS  Google Scholar 

  • Blair CD (2011) Mosquito RNAi is the major innate immune pathway controlling arbovirus infection and transmission. Future Microbiol 6:265–277

    Article  PubMed  CAS  Google Scholar 

  • Bonning BC, Miller WA (2010) Dicistroviruses. Annu Rev Entomol 55:129–150

    Article  PubMed  CAS  Google Scholar 

  • Brackney DE, Beane JE, Ebel GD (2009) RNAi targeting of West Nile virus in mosquito midguts promotes virus diversification. PLoS Pathog 5:e1000502

    Article  PubMed  Google Scholar 

  • Brackney DE, Scott JC, Sagawa F, Woodward JE, Miller NA, Schilkey FD, Mudge J, Wilusz J, Olson KE, Blair CD (2010) C6/36 Aedes albopictus cells have a dysfunctional antiviral RNA interference response. PLOS Neglected Trop Dis 4:e856

    Article  Google Scholar 

  • Brennecke J, Stark A, Russell RB, Cohen SM (2005) Principles of MicroRNA–target recognition. PLoS Biol 3:e85

    Article  PubMed  Google Scholar 

  • Brennecke J, Aravin AA, Stark A, Dus M, Kellis M, Sachidanandam R, Hannon GJ (2007) Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell 128:1089–1103

    Article  PubMed  CAS  Google Scholar 

  • Bronkhorst AW, van Cleef KWR, Vodovar N, Ä°nce Ä°A, Blanc H, Vlak JM, Saleh M-C, van Rij RP (2012) The DNA virus Invertebrate iridescent virus 6 is a target of the Drosophila RNAi machinery. Proc Natl Acad Sci 109:E3604–E3613

    Article  PubMed  CAS  Google Scholar 

  • Campbell CL, Black WC, Hess AM, Foy BD (2008) Comparative genomics of small RNA regulatory pathway components in vector mosquitoes. BMC Genomics 9:425

    Article  PubMed  Google Scholar 

  • Carthew RW, Sontheimer EJ (2009) Origins and mechanisms of miRNAs and siRNAs. Cell 136:642–655

    Article  PubMed  CAS  Google Scholar 

  • Caudy AA, Myers M, Hannon GJ, Hammond SM (2002) Fragile X-related protein and VIG associate with the RNA interference machinery. Genes Dev 16:2491–2496

    Article  PubMed  CAS  Google Scholar 

  • Caudy AA, Ketting RF, Hammond SM, Denli AM, Bathoorn AM, Tops BB, Silva JM, Myers MM, Hannon GJ, Plasterk RH (2003) A micrococcal nuclease homologue in RNAi effector complexes. Nature 425:411–414

    Article  PubMed  CAS  Google Scholar 

  • Cenik ES, Fukunaga R, Lu G, Dutcher R, Wang Y, Tanaka Hall TM, Zamore PD (2011) Phosphate and R2D2 restrict the substrate specificity of Dicer-2, an ATP-driven ribonuclease. Mol Cell 42:172–184

    Article  PubMed  CAS  Google Scholar 

  • Cernilogar FM, Onorati MC, Kothe GO, Burroughs AM, Parsi KM, Breiling A, Sardo FL, Saxena A, Miyoshi K, Siomi H (2011) Chromatin-associated RNA interference components contribute to transcriptional regulation in Drosophila. Nature 480:391–395

    Article  PubMed  CAS  Google Scholar 

  • Chao JA, Lee JH, Chapados BR, Debler EW, Schneemann A, Williamson JR (2005) Dual modes of RNA-silencing suppression by flock house virus protein B2. Nat Struct Mol Biol 12:952–957

    Article  PubMed  CAS  Google Scholar 

  • Chu PW, Westaway EG (1985) Replication strategy of Kunjin virus: evidence for recycling role of replicative form RNA as template in semiconservative and asymmetric replication. Virology 140:68–79

    Article  PubMed  CAS  Google Scholar 

  • Cleaves GR, Ryan TE, Walter Schlesinger R (1981) Identification and characterization of type 2 dengue virus replicative intermediate and replicative form RNAs. Virology 111:73–83

    Article  PubMed  CAS  Google Scholar 

  • Czech B, Malone CD, Zhou R, Stark A, Schlingeheyde C, Dus M, Perrimon N, Kellis M, Wohlschlegel JA, Sachidanandam R, Hannon GJ, Brennecke J (2008) An endogenous small interfering RNA pathway in Drosophila. Nature 453:798–802

    Article  PubMed  CAS  Google Scholar 

  • Deddouche S, Matt N, Budd A, Mueller S, Kemp C, Galiana-Arnoux D, Dostert C, Antoniewski C, Hoffmann JA, Imler J-L (2008) The DExD/H-box helicase Dicer-2 mediates the induction of antiviral activity in drosophila. Nat Immunol 9:1425–1432

    Article  PubMed  CAS  Google Scholar 

  • Denli AM, Tops BBJ, Plasterk RHA, Ketting RF, Hannon GJ (2004) Processing of primary microRNAs by the microprocessor complex. Nat Cell Biol 432:231–235

    CAS  Google Scholar 

  • Ding S-W (2010) RNA-based antiviral immunity. Nat Rev Immunol 10:632–644

    Article  PubMed  CAS  Google Scholar 

  • Félix M-A, Ashe A, Piffaretti J, Wu G, Nuez I, Bélicard T, Jiang Y, Zhao G, Franz CJ, Goldstein LD (2011) Natural and experimental infection of Caenorhabditis nematodes by novel viruses related to nodaviruses. PLoS Biol 9:e1000586

    Article  PubMed  Google Scholar 

  • Flynt A, Liu N, Martin R, Lai EC (2009) Dicing of viral replication intermediates during silencing of latent Drosophila viruses. Proc Natl Acad Sci 106:5270–5275

    Article  PubMed  CAS  Google Scholar 

  • Galiana-Arnoux D, Dostert C, Schneemann A, Hoffmann JA, Imler J-L (2006) Essential function in vivo for Dicer-2 in host defense against RNA viruses in drosophila. Nat Immunol 7:590–597

    Article  PubMed  CAS  Google Scholar 

  • Gibbings D, Mostowy S, Jay F, Schwab Y, Cossart P, Voinnet O (2012) Selective autophagy degrades DICER and AGO2 and regulates miRNA activity. Nat Cell Biol 14:1314–1321

    Article  PubMed  CAS  Google Scholar 

  • Goic B, Vodovar N, Mondotte JA, Monot C, Frangeui L, Blanc H, Gausson V, Vera-Otarols J, Cristofari G Saleh MC (2013) RNA virus persistence in Drosophila is controlled by small interfering RNAs produced from de novo synthesized virus cDNA. Nature Immunol 14:396–403

    Google Scholar 

  • Gottwein E, Cullen BR (2008) Viral and cellular microRNAs as determinants of viral pathogenesis and immunity. Cell Host Microbe 3:375–387

    Article  PubMed  CAS  Google Scholar 

  • Hain D, Bettencourt BR, Okamura K, Csorba T, Meyer W, Jin Z, Biggerstaff J, Siomi H, Hutvagner G, Lai EC, Welte M, Muller HA (2010) Natural variation of the amino-terminal glutamine-rich domain in Drosophila argonaute2 is not associated with developmental defects. PLoS ONE 5:e15264

    Article  PubMed  CAS  Google Scholar 

  • Hammond SM, Boettcher S, Caudy AA, Kobayashi R, Hannon GJ (2001) Argonaute2, a link between genetic and biochemical analyses of RNAi. Sci Signal 293:1146

    CAS  Google Scholar 

  • Hess AM, Prasad AN, Ptitsyn A, Ebel GD, Olson KE, Barbacioru C, Monighetti C, Campbell CL (2011) Small RNA profiling of Dengue virus-mosquito interactions implicates the Piwi RNA pathway in anti-viral defense. BMC Microbiol 11:45

    Article  PubMed  CAS  Google Scholar 

  • Hinas A, Wright AJ, Hunter CP (2012) SID-5 is an endosome-associated protein required for efficient systemic RNAi in C. elegans. Curr Biol 22:1938–1943

    Article  PubMed  CAS  Google Scholar 

  • Horwich MD, Li C, Matranga C, Vagin V, Farley G, Wang P, Zamore PD (2007) The Drosophila RNA methyltransferase, DmHen1, modifies germline piRNAs and single-stranded siRNAs in RISC. Curr Biol 17:1265–1272

    Article  PubMed  CAS  Google Scholar 

  • Hussain M, Torres S, Schnettler E, Funk A, Grundhoff A, Pijlman GP, Khromykh AA, Asgari S (2012) West Nile virus encodes a microRNA-like small RNA in the 3′ untranslated region which up-regulates GATA4 mRNA and facilitates virus replication in mosquito cells. Nucleic Acids Res 40:2210–2223

    Article  PubMed  CAS  Google Scholar 

  • Ishizuka A, Siomi MC, Siomi H (2002) A Drosophila fragile X protein interacts with components of RNAi and ribosomal proteins. Genes Dev 16:2497–2508

    Article  PubMed  CAS  Google Scholar 

  • Jiang F, Ye X, Liu X, Fincher L, McKearin D, Liu Q (2005) Dicer-1 and R3D1-L catalyze microRNA maturation in Drosophila. Genes Dev 19:1674–1679

    Article  PubMed  CAS  Google Scholar 

  • Keene KM, Foy BD, Sanchez-Vargas I, Beaty BJ, Blair CD, Olson KE (2004) RNA interference acts as a natural antiviral response to O’nyong-nyong virus (Alphavirus; Togaviridae) infection of Anopheles gambiae. Proc Natl Acad Sci USA 101:17240–17245

    Article  PubMed  CAS  Google Scholar 

  • Kemp C, Mueller S, Goto A, Barbier V, Paro S, Bonnay F, Dostert C, Troxler L, Hetru C, Meignin C, Pfeffer S, Hoffmann JA, Imler JL (2013) Broad RNA interference-mediated antiviral immunity and virus-specific inducible responses in Drosophila. J Immunol 190:650–658

    Article  PubMed  CAS  Google Scholar 

  • Kopek BG, Perkins G, Miller DJ, Ellisman MH, Ahlquist P (2007) Three-dimensional analysis of a viral RNA replication complex reveals a virus-induced mini-organelle. PLoS Biol 5:e220

    Article  PubMed  Google Scholar 

  • Lau NC, Robine N, Martin R, Chung WJ, Niki Y, Berezikov E, Lai EC (2009) Abundant primary piRNAs, endo-siRNAs, and microRNAs in a Drosophila ovary cell line. Genome Res 19:1776–1785

    Article  PubMed  CAS  Google Scholar 

  • Lau PW, Guiley KZ, De N, Potter CS, Carragher B, MacRae IJ (2012) The molecular architecture of human Dicer. Nat Struct Mol Biol 19:436–440

    Article  PubMed  CAS  Google Scholar 

  • Lee YS, Pressman S, Andress AP, Kim K, White JL, Cassidy JJ, Li X, Lubell K, Lim DH, Cho IS, Nakahara K, Preall JB, Bellare P, Sontheimer EJ, Carthew RW (2009) Silencing by small RNAs is linked to endosomal trafficking. Nat Cell Biol 11:1150–1156

    Article  PubMed  CAS  Google Scholar 

  • Léger P, Lara E, Jagla B, Sismeiro O, Mansuroglu Z, Coppée JY, Bonnefoy E, Bouloy M (2013) Dicer-2- and Piwi-mediated RNA interference in rift valley fever virus-infected mosquito cells. J Virol 87:1631–1648

    Article  PubMed  Google Scholar 

  • Li H, Li W-X, Ding S-W (2002) Induction and suppression of RNA silencing by an animal virus. Sci Signal 296:1319

    CAS  Google Scholar 

  • Liu Q, Rand TA, Kalidas S, Du F, Kim H-E, Smith DP, Wang X (2003) R2D2, a bridge between the initiation and effector steps of the Drosophila RNAi pathway. Science 301:1921–1925

    Article  PubMed  CAS  Google Scholar 

  • Liu X, Jiang F, Kalidas S, Smith D, Liu Q (2006) Dicer-2 and R2D2 coordinately bind siRNA to promote assembly of the siRISC complexes. RNA (New York) 12:1514–1520

    Google Scholar 

  • Liu Y, Ye X, Jiang F, Liang C, Chen D, Peng J, Kinch LN, Grishin NV, Liu Q (2009) C3PO, an endoribonuclease that promotes RNAi by facilitating RISC activation. Science 325:750–753

    Article  PubMed  CAS  Google Scholar 

  • Lu R, Maduro M, Li F, Li HW, Broitman-Maduro G, Li WX, Ding SW (2005) Animal virus replication and RNAi-mediated antiviral silencing in Caenorhabditis elegans. Nat Cell Biol 436:1040–1043

    CAS  Google Scholar 

  • Lu R, Yigit E, Li W-X, Ding S-W (2009) An RIG-I-Like RNA helicase mediates antiviral RNAi downstream of Viral siRNA biogenesis in Caenorhabditis elegans. PLoS Pathog 5:e1000286

    Article  PubMed  Google Scholar 

  • MacRae IJ, Zhou K, Doudna JA (2007) Structural determinants of RNA recognition and cleavage by Dicer. Nat Struct Mol Biol 14:934–940

    Article  PubMed  CAS  Google Scholar 

  • Marques JT, Kim K, Wu PH, Alleyne TM, Jafari N, Carthew RW (2009) Loqs and R2D2 act sequentially in the siRNA pathway in Drosophila. Nat Struct Mol Biol 17:24–30

    Article  PubMed  Google Scholar 

  • Matranga C, Tomari Y, Shin C, Bartel DP, Zamore PD (2005) Passenger-strand cleavage facilitates assembly of siRNA into Ago2-containing RNAi enzyme complexes. Cell 123:607–620

    Article  PubMed  CAS  Google Scholar 

  • Morazzani EM, Wiley MR, Murreddu MG, Adelman ZN, Myles KM (2012) Production of virus-derived ping-pong-dependent pirna-like small RNAs in the mosquito soma. PLoS Pathog 8:e1002470

    Article  PubMed  CAS  Google Scholar 

  • Mueller S, Gausson V, Vodovar N, Deddouche S, Troxler L, Perot J, Pfeffer S, Hoffmann JA, Saleh M-C, Imler J-L (2010) RNAi-mediated immunity provides strong protection against the negative-strand RNA vesicular stomatitis virus in Drosophila. Proc Natl Acad Sci USA 107:19390–19395

    Article  PubMed  CAS  Google Scholar 

  • Myles KM, Wiley MR, Morazzani EM, Adelman ZN (2008) Alphavirus-derived small RNAs modulate pathogenesis in disease vector mosquitoes. Proc Natl Acad Sci 105:19938–19943

    Article  PubMed  CAS  Google Scholar 

  • Nayak A, Andino R (2011) Slicer activity in Drosophila melanogaster S2 extract. Methods in molecular biology (Clifton, NJ) 721: 231–244

    Google Scholar 

  • Nayak A, Berry B, Tassetto M, Kunitomi M, Acevedo A, Deng C, Krutchinsky A, Gross J, Antoniewski C, Andino R (2010) Cricket paralysis virus antagonizes Argonaute 2 to modulate antiviral defense in Drosophila. Nat Struct Mol Biol 17: 547–554

    Google Scholar 

  • Obbard DJ, Jiggins FM, Halligan DL, Little TJ (2006) Natural selection drives extremely rapid evolution in antiviral RNAi genes. Curr Biol 16:580–585

    Article  PubMed  CAS  Google Scholar 

  • Obbard DJ, Gordon KHJ, Buck AH, Jiggins FM (2009) The evolution of RNAi as a defence against viruses and transposable elements. Philos Trans Roy Soc B: Biol Sci 364:99–115

    Article  CAS  Google Scholar 

  • Okada C, Yamashita E, Lee SJ, Shibata S, Katahira J, Nakagawa A, Yoneda Y, Tsukihara T (2009) A high-resolution structure of the pre-microRNA nuclear export machinery. Science 326:1275–1279

    Article  PubMed  CAS  Google Scholar 

  • Paradkar PN, Trinidad L, Voysey R, Duchemin J-B, Walker PJ (2012) Secreted Vago restricts West Nile virus infection in Culex mosquito cells by activating the Jak-STAT pathway. Proc Natl Acad Sci 109:18915–18920

    Article  PubMed  CAS  Google Scholar 

  • Qi N, Zhang L, Qiu Y, Wang Z, Si J, Liu Y, Xiang X, Xie J, Qin CF, Zhou X, Hu Y (2012) Targeting of Dicer-2 and RNA by a Viral RNA silencing suppressor in Drosophila cells. J Virol 86:5763–5773

    Article  PubMed  CAS  Google Scholar 

  • Qin H, Chen F, Huan X, Machida S, Song J, Yuan YA (2010) Structure of the Arabidopsis thaliana DCL4 DUF283 domain reveals a noncanonical double-stranded RNA-binding fold for protein–protein interaction. RNA (New York) 16: 474–481

    Google Scholar 

  • Rand TA, Petersen S, Du F, Wang X (2005) Argonaute2 cleaves the anti-guide strand of siRNA during RISC activation. Cell 123:621–630

    Article  PubMed  CAS  Google Scholar 

  • Rechavi O, Minevich G, Hobert O (2011) Transgenerational inheritance of an acquired small RNA-based antiviral response in C. elegans. Cell 147:1248–1256

    Article  PubMed  CAS  Google Scholar 

  • Rehwinkel J, Behm-Ansmant I, Gatfield D, Izaurralde E (2005) A crucial role for GW182 and the DCP1:DCP2 decapping complex in miRNA-mediated gene silencing. RNA (New York) 11: 1640–1647

    Google Scholar 

  • Sabin LR, Zhou R, Gruber JJ, Lukinova N, Bambina S, Berman A, Lau CK, Thompson CB, Cherry S (2009) Ars2 regulates both miRNA- and siRNA- dependent silencing and suppresses RNA virus infection in Drosophila. Cell 138:340–351

    Article  PubMed  CAS  Google Scholar 

  • Sabin LR, Zheng Q, Thekkat P, Yang J, Hannon GJ, Gregory BD, Tudor M, Cherry S (2013) Dicer-2 processes diverse viral RNA species. PLoS ONE 8:e55458

    Article  PubMed  CAS  Google Scholar 

  • Saito K, Ishizuka A, Siomi H, Siomi MC (2005) Processing of Pre-microRNAs by the Dicer-1–Loquacious complex in Drosophila cells. PLoS Biol 3:e235

    Article  PubMed  Google Scholar 

  • Saleh M-C, Tassetto M, van Rij RP, Goic B, Gausson V, Berry B, Jacquier C, Antoniewski C, Andino R (2009) Antiviral immunity in Drosophila requires systemic RNA interference spread. Nature 458:346–350

    Article  PubMed  CAS  Google Scholar 

  • Sánchez-Vargas I, Scott JC, Poole-Smith BK, Franz AW, Barbosa-Solomieu V, Wilusz J, Olson KE, Blair CD (2009) Dengue virus type 2 infections of Aedes aegypti are modulated by the mosquito’s RNA interference pathway. PLoS Pathog 5:e1000299

    Article  PubMed  Google Scholar 

  • Schnettler E, Sterken MG, Leung JY, Metz SW, Geertsema C, Goldbach RW, Vlak JM, Kohl A, Khromykh AA, Pijlman GP (2012) Noncoding flavivirus RNA displays RNA interference suppressor activity in insect and Mammalian cells. J Virol 86:13486–13500

    Article  PubMed  CAS  Google Scholar 

  • Schott DH, Cureton DK, Whelan SP, Hunter CP (2005) An antiviral role for the RNA interference machinery in Caenorhabditis elegans. Proc Natl Acad Sci USA 102:18420–18424

    Article  PubMed  CAS  Google Scholar 

  • Scott JC, Brackney DE, Campbell CL, Bondu-Hawkins V, Hjelle B, Ebel GD, Olson KE, Blair CD (2010) Comparison of Dengue Virus type 2-specific small RNAs from RNA interference-competent and—incompetent mosquito cells. PLOS Neglected Trop Dis 4:e848

    Article  Google Scholar 

  • Simons M, Raposo G (2009) Exosomes–vesicular carriers for intercellular communication. Curr Opin Cell Biol 21:575–581

    Article  PubMed  CAS  Google Scholar 

  • Singh G, Popli S, Hari Y, Malhotra P, Mukherjee S, Bhatnagar RK (2009) Suppression of RNA silencing by Flock house virus B2 protein is mediated through its interaction with the PAZ domain of Dicer. FASEB J: Off Publ Federation Am Soc Exp Biol 23:1845–1857

    Article  CAS  Google Scholar 

  • Siomi MC, Sato K, Pezic D, Aravin AA (2011) Piwi-interacting small RNAs: the vanguard of genome defence. Nat Rev Mol Cell Biol 12:246–258

    Article  PubMed  CAS  Google Scholar 

  • Siu RW, Fragkoudis R, Simmonds P, Donald CL, Chase-Topping ME, Barry G, Attarzadeh-Yazdi G, Rodriguez-Andres J, Nash AA, Merits A (2011) Antiviral RNA interference responses induced by Semliki Forest virus infection of mosquito cells: characterization, origin, and frequency-dependent functions of virus-derived small interfering RNAs. J Virol 85:2907–2917

    Article  PubMed  CAS  Google Scholar 

  • Skalsky RL, Cullen BR (2010) Viruses, microRNAs, and host interactions. Annual Rev Microbiol 64(1):123

    Google Scholar 

  • Skalsky RL, Vanlandingham DL, Scholle F, Higgs S, Cullen BR (2010) Identification of microRNAs expressed in two mosquito vectors, Aedes albopictus and Culex quinquefasciatus. BMC Genomics 11:119

    Article  PubMed  Google Scholar 

  • Stark A, Lin MF, Kheradpour P, Pedersen JS, Parts L, Carlson JW, Crosby MA, Rasmussen MD, Roy S, Deoras AN, Ruby JG, Brennecke J, Matthews BB, Schroeder AJ, Gramates LS, Pierre SES, Roark M, Wiley KL Jr, Kulathinal RJ, Zhang P, Myrick KV, Antone JV, Gelbart WM, Yu C, Park S, Wan KH, Celniker SE, Hodges E, Hinrichs AS, Caspi A, Paten B, Park S-W, Han MV, Maeder ML, Polansky BJ, Robson BE, Aerts S, van Helden J, Hassan B, Gilbert DG, Eastman DA, Rice M, Weir M, Hahn MW, Park Y, Dewey CN, Pachter L, Kent WJ, Haussler D, Lai EC, Bartel DP, Hannon GJ, Kaufman TC, Eisen MB, Clark AG, Smith D, Kellis M (2007) Discovery of functional elements in 12 Drosophila genomes using evolutionary signatures. Nature 450:219–232

    Article  PubMed  CAS  Google Scholar 

  • Théry C (2011) Exosomes: secreted vesicles and intercellular communications. F1000 biology reports 3

    Google Scholar 

  • Tomari Y, Du T, Haley B, Schwarz DS, Bennett R, Cook HA, Koppetsch BS, Theurkauf WE, Zamore PD (2004a) RISC assembly defects in the Drosophila RNAi mutant armitage. Cell 116:831–841

    Article  PubMed  CAS  Google Scholar 

  • Tomari Y, Matranga C, Haley B, Martinez N, Zamore PD (2004b) A protein sensor for siRNA asymmetry. Science 306:1377–1380

    Article  PubMed  CAS  Google Scholar 

  • van Mierlo JT, Bronkhorst AW, Overheul GJ, Sadanandan SA, Ekström J-O, Heestermans M, Hultmark D, Antoniewski C, van Rij RP (2012) Convergent evolution of argonaute-2 slicer antagonism in two distinct insect RNA viruses. PLoS Pathog 8:e1002872

    Article  PubMed  Google Scholar 

  • van Rij RP, Saleh MC, Berry B, Foo C, Houk A, Antoniewski C, Andino R (2006) The RNA silencing endonuclease Argonaute 2 mediates specific antiviral immunity in Drosophila melanogaster. Genes Dev 20:2985–2995

    Article  PubMed  Google Scholar 

  • Vodovar N, Bronkhorst AW, van Cleef KWR, Miesen P, Blanc H, van Rij RP, Saleh M-C (2012) Arbovirus-derived piRNAs exhibit a ping-pong signature in mosquito cells. PLoS ONE 7:e30861

    Article  PubMed  CAS  Google Scholar 

  • Wang X-H, Aliyari R, Li W-X, Li H-W, Kim K, Carthew R, Atkinson P, Ding S-W (2006) RNA interference directs innate immunity against viruses in adult Drosophila. Sci Signal 312:452

    CAS  Google Scholar 

  • Welker NC, Maity TS, Ye X, Aruscavage PJ, Krauchuk AA, Liu Q, Bass BL (2011) Dicer’s helicase domain discriminates dsRNA termini to promote an altered reaction mode. Mol Cell 41:589–599

    Article  PubMed  CAS  Google Scholar 

  • Wilkins C, Dishongh R, Moore SC, Whitt MA, Chow M, Machaca K (2005) RNA interference is an antiviral defence mechanism in Caenorhabditis elegans. Nat Cell Biol 436:1044–1047

    CAS  Google Scholar 

  • Winston WM, Molodowitch C, Hunter CP (2002) Systemic RNAi in C. elegans requires the putative transmembrane protein SID-1. Science 295:2456-2459

    Google Scholar 

  • Winston WM, Sutherlin M, Wright AJ, Feinberg EH, Hunter CP (2007) Caenorhabditis elegans SID-2 is required for environmental RNA interference. Proc Natl Acad Sci 104:10565–10570

    Article  PubMed  CAS  Google Scholar 

  • Wu Q, Luo Y, Lu R, Lau N, Lai EC, Li WX, Ding SW (2010a) Virus discovery by deep sequencing and assembly of virus-derived small silencing RNAs. Proc Natl Acad Sci 107:1606–1611

    Article  PubMed  CAS  Google Scholar 

  • Wu Q, Wang X, Ding SW (2010b) Viral suppressors of RNA-based viral immunity: host targets. Cell Host Microbe 8:12–15

    Article  PubMed  CAS  Google Scholar 

  • Zambon RA, Vakharia VN, Wu LP (2006) RNAi is an antiviral immune response against a dsRNA virus in Drosophila melanogaster. Cell Microbiol 8:880–889

    Article  PubMed  CAS  Google Scholar 

  • Zamore PD, Tuschl T, Sharp PA, Bartel DP (2000) RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 101:25–34

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Kolb FA, Jaskiewicz L, Westhof E, Filipowicz W (2004) Single processing center models for human Dicer and bacterial RNase III. Cell 118:57–68

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We apologize to colleagues whose relevant publications were not cited because of space constraints. We thank Cecily Burrill, member of the RA laboratory for critical reading of the manuscript. We thank Kirk Ehmsen and Ashesh Saraiya for their helpful comments and discussion. Research in RA laboratory is financially supported by National Institute Health grants R01 AI40085 and AI064738.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raul Andino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nayak, A., Tassetto, M., Kunitomi, M., Andino, R. (2013). RNA Interference-Mediated Intrinsic Antiviral Immunity in Invertebrates. In: Cullen, B. (eds) Intrinsic Immunity. Current Topics in Microbiology and Immunology, vol 371. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37765-5_7

Download citation

Publish with us

Policies and ethics