Skip to main content

Global Chassis Control Using Coordinated Control of Braking/Steering Actuators

  • Chapter
Robust Control and Linear Parameter Varying Approaches

Abstract

Automotive light vehicles are complex systems involving many different dynamics. On one side, vertical, roll and pitch behaviours are often related to comfort performances (indeed, roll is also linked to safety characteristics [23]). On the other hand, safety performances are mainly characterized by the longitudinal, lateral and yaw dynamics [38, 14]. In practice, these two behaviours are often treated in a decoupled may (the first dynamics are often related to suspensions systems while the second one to steering and braking systems). This chapter focuses on the safety problem, and more specifically, on lateral and yaw dynamics. It presents two close techniques to design robust gain-scheduled \(\mathcal{H}_\infty\) MIMO VDSC (Vehicle Dynamic Stability Controller), involving both steering and rear braking actuators. Both approaches aim at restoring the yaw rate of the vehicle as close as possible to the nominal motion expected by the driver. The specific framework of each of that approaches is given below.

  • First, a methodology allowing to synthesize such a controller while taking into account the braking actuator limitations and involving the steering actuator only if it is necessary, is presented. The proposed solution is coupled with a local ABS strategy to guarantee slip stability and make the solution complete. The originality relies on the LPV formulation of the saturation-like function of the allowable braking force directly during the synthesis step.

  • Secondly, the control design methodology aims at using the steering action to control the yaw rate and at limiting the use of the braking actuator only when the vehicle goes toward instability. Judging the vehicle stability region is done from the phase-plane of the side-slip angle and its time derivative, which is used to monitor the car dynamical behaviour.

These controllers are both treated in an original way by the synthesis of a parameter dependent controller built in the LPV framework and by the solution of an LMI problem. Nonlinear time and frequency domain simulations, performed on a complex full vehicle model (which has been validated on a real car), subject to critical driving situations, show the efficiency and robustness of the proposed solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acarman, T.: Nonlinear optimal integrated vehicle control using individual braking torque and steering angle with on-line control allocation by using state-dependent Riccati equation technique. Vehicle System Dynamics 47(2), 155–177 (2009)

    Article  Google Scholar 

  2. Ackermann, J., Bunte, T.: Yaw disturbance attenuation by robust decoupling of car steering. In: Proceedings of the 13th IFAC World Congress (WC), San Francisco, California, pp. 1–6 (1996)

    Google Scholar 

  3. Andreasson, J., Bunte, T.: Global chassis control based on inverse vehicle dynamics models. Vehicle System Dynamics 44(suppl.), 321–328 (2006)

    Article  Google Scholar 

  4. Anwar, S.: Yaw stability control of an automotive vehicle via generalized predictive algorith. In: American Control Conference, Portland, USA (2005)

    Google Scholar 

  5. Apkarian, P., Gahinet, P.: A convex characterization of gain scheduled \(\mathcal{H}_\infty\) controllers. IEEE Transaction on Automatic Control 40(5), 853–864 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  6. Apkarian, P., Gahinet, P., Beker, G.: Self-scheduled \(\mathcal{H}_\infty\) control of linear parameter-varying systems: A design example. Automatica 31(9), 1251–1262 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  7. Baslamisli, S., Köse, I., Anlas, G.: Gain scheduled integrated active steering and active differential control for vehicle handling improvement. Vehicle System Dynamics 41(1), 99–119 (2009)

    Article  Google Scholar 

  8. Bruzelius, F., Pettersson, S., Breitholz, C.: Linear parameter varying descriptions of nonlinear systems. In: Proceedings of the IEEE American Control Conference (ACC), Boston, Massachusetts, pp. 1374–1379 (2004)

    Google Scholar 

  9. Canale, M., Fagiano, L., Ferrora, A., Vecchio, C.: Vehicle yaw control via second order sliding mode technique. IEEE Industrial Electronics 55(11), 3908–3916 (2008)

    Article  Google Scholar 

  10. Canale, M., Fagiano, L., Milanese, M., Borodani, P.: Robust vehicle yaw control using an active differential and IMC techniques. Control Engineering Practice 15(8), 923–941 (2007)

    Article  Google Scholar 

  11. Chou, H., d’Andréa Novel, B.: Global vehicle control using differential braking torques and active suspension forces. Vehicle System Dynamics 43(4), 261–284 (2005)

    Article  Google Scholar 

  12. Corno, M., Tanelli, M., Boniolo, I., Savaresi, S.: Advanced yaw control of four-wheeled vehicles via rear active differential brakin. In: 48th IEEE Conference on Decision and Control, Shanghai, China, pp. 5176–5181 (2009)

    Google Scholar 

  13. Denny, M.: The dynamics of antilock brake systems. European Journal of Physics 26, 1007–1016 (2005)

    Article  Google Scholar 

  14. Doumiati, M., Sename, O., Dugard, L., Martinez-Molina, J.J., Gaspar, P., Szabo, Z.: Integrated vehicle dynamics control via coordination of active front steering and rear braking. To appear in European Journal of Control (2012)

    Google Scholar 

  15. Doumiati, M., Victorino, A., Charara, A., Lechner, D.: On board real-time estimation of vehicle lateral tire-forces and sideslip angle. IEEE Transactions on Mechatronics 16(4), 601–614 (2011)

    Article  Google Scholar 

  16. Doumiati, M., Victorino, A., Lechner, D., Baffet, G., Charara, A.: Observers for vehicle tyre/road forces estimations: experimental validation. Vehicle System Dynamics 48(11), 1345–1378 (2010)

    Article  Google Scholar 

  17. Falcone, P., Borrelli, F., Asgari, J., Tseng, H., Hrovat, D.: Predictive active steering control for autonomous vehicle systems. IEEE Transaction on Control System Technology 15(3), 566–580 (2007)

    Article  Google Scholar 

  18. Falcone, P., Borrelli, F., Tseng, H., Asgari, J., Hrovat, D.: Integrated braking and steering model predictive control approach in autonomous vehicles. In: Proceedings of the 5th IFAC Symposium on Advances on Automotive Control (AAC), Aptos, California (2007)

    Google Scholar 

  19. Fisher, D., Borner, M., Schmitt, J., Isermann, R.: Fault detection for lateral vertical vehicle dynamics. Control Engineering Practice 15, 315–324 (2007)

    Article  Google Scholar 

  20. Gahinet, P., Apkarian, P., Chilali, M.: Affine parameter-dependent Lyapunov functions and real parametric uncertainty. IEEE Transaction on Automatic Control 41(3), 436–442 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  21. Gáspár, P., Szabó, Z., Bokor, J.: The design of an integrated control system in heavy vehicles based on an LPV method. In: Proceedings of the 44th IEEE Conference on Decision and Control (CDC), Seville, Spain, pp. 6722–6727 (2005)

    Google Scholar 

  22. Gáspár, P., Szabó, Z., Bokor, J.: Side force coefficient estimation for the design of an active brake. In: Proceedings of the IEEE American Control Conference (ACC), Mineapolis, Minesota, pp. 2927–2932 (2006)

    Google Scholar 

  23. Gáspár, P., Szabó, Z., Bokor, J., Poussot-Vassal, C., Sename, O., Dugard, L.: Toward Global Chassis Control by Integrating the Brake and Suspension Systems. In: Proceedings of the 5th IFAC Symposium on Advances in Automotive Control, Aptos, California, USA (2007)

    Google Scholar 

  24. Gáspár, P., Szaszi, I., Bokor, J.: Rollover stability control for heavy vehicles by using LPV model. In: Proceedings of the 1st IFAC Symposium on Advances in Automotive Control (AAC), Salerno, Italy (2004)

    Google Scholar 

  25. Grip, H., Imsland, L., Johansen, T., Fossen, T.: Nonlinear vehicle sideslip estimation with friction adaptation. Automatica 44(3), 611–622 (2008)

    Article  MathSciNet  Google Scholar 

  26. Guvenç, B., Guvenç, L., Karaman, S.: Robust yaw stability and hardware-in-the-loop testing for a road vehicle. IEEE Transaction on Control System Technology 58(2), 555–571 (2009)

    Google Scholar 

  27. Güvenç, B., Bünte, T., Odenthal, D., Güvenç, L.: Robust two degree-of-freedom vehicle steering controller design. IEEE Transactions on Control System Technology 12(4), 627–636 (2004)

    Article  Google Scholar 

  28. He, J., Crolla, D., Levesley, M., Manning, W.: Coordination of active steering, driveline, and braking for integrated vehicle dynamics control. Proc. Inst. Mech Engineers, PartD: Automobile Engineering 220(10), 1401–1420 (2006)

    Article  Google Scholar 

  29. Johansen, T., Petersen, I., Kalkkuhl, J., Ludemann, J.: Gain-scheduled wheel slip control in automotive brake systems. IEEE Transaction on Control System Technology 11(6), 799–811 (2003)

    Article  Google Scholar 

  30. Lin-Hui, Z., Zhi-Yuan, L., Hong, C.: Design of a nonlinear observer for vehicle velocity estimation and experiments. IEEE Transactions on Control Systems Technology 19(3), 664–672 (2011)

    Article  Google Scholar 

  31. Lofberg, J.: YALMIP: A toolbox for modeling and optimization in MATLAB. In: Proceedings of the CACSD Conference, Taipei, Taiwan (2004), http://control.ee.ethz.ch/~joloef/yalmip.php

  32. Mammar, S., Koenig, D.: Vehicle handling improvement by active steering. Vehicle System Dynamics 38(3), 211–242 (2002)

    Article  Google Scholar 

  33. Panzani, G., Corno, M., Tanelli, M., Zappavigna, A., Savaresi, S., Fortina, A., Campo, S.: Designing on-demand four-wheel-drive vehicles via active control of the central transfer case. IEEE Transactions on Intelligent Transportation Systems 11(4), 931–941 (2010)

    Article  Google Scholar 

  34. Piyabongkarn, D., Rajamani, R., Grogg, J., Lew, J.: Development and experimental evaluation of a slip angle estimator for vehicle stability control. IEEE Transactions on Control Systems Technology 17(1), 78–88 (2009)

    Article  Google Scholar 

  35. Poussot-Vassal, C.: Robust Multivariable Linear Parameter Varying Automotive Global Chassis Control. PhD thesis, Grenoble INP, GIPSA-lab, Control System dpt., Grenoble, France (2008)

    Google Scholar 

  36. Poussot-Vassal, C., Sename, O., Dugard, L.: A Global Chassis Controller for Handling Improvements Involving Braking and Steering Systems. In: Proceedings of the 47th IEEE Conference on Decision and Control, Cancun, Mexico, pp. 5366–5371 (2008)

    Google Scholar 

  37. Poussot-Vassal, C., Sename, O., Dugard, L., Gáspár, P., Szabó, Z., Bokor, J.: Attitude and handling improvements through gain-scheduled suspensions and brakes control. Control Engineering Practice 19(3), 252–263 (2011)

    Article  Google Scholar 

  38. Poussot-Vassal, C., Sename, O., Dugard, L., Savaresi, S.M.: Vehicle dynamic stability improvements through gain-scheduled steering and braking control. Vehicle System Dynamics 49(10), 1597–1621 (2010)

    Article  Google Scholar 

  39. Rossetter, E., Gerdes, J.: A study of lateral vehicle control under a virtual force framework. In: Proceedings of the International Symposium on Advanced Vehicle Control, Hiroshima, Japan (2002)

    Google Scholar 

  40. Savaresi, S., Tanelli, M., Cantoni, C.: Mixed slip-deceleration control in automotive braking systems. ASME Transactions: Journal of Dynamic Systems, Measurement and Control 129(1), 20–31 (2007)

    Article  Google Scholar 

  41. Scherer, C., Gahinet, P., Chilali, M.: Multiobjective output-feedback control via LMI optimization. IEEE Transaction on Automatic Control 42(7), 896–911 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  42. Shamma, J., Athans, M.: Guaranteed properties of linear parameter varying gain scheduled control systems. Automatica 27(3), 559–564 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  43. Sturm, J.F.: Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optim. Methods Softw. 11/12(1-4), 625–653 (1999); Interior point methods

    Article  MathSciNet  Google Scholar 

  44. Tanelli, M., Sartori, R., Savaresi, S.: Combining slip and deceleration control for brake-by-wire control systems: a sliding-mode approach. European Journal of Control 13(6), 593–611 (2007)

    Article  MathSciNet  Google Scholar 

  45. Tjonnas, J., Johansen, T.: Stabilization of automotive vehicles using active steering and adaptive brake control allocation. IEEE Transactions on Control Systems Technology 18(3), 545–558 (2010)

    Article  Google Scholar 

  46. Toth, R., Felici, F., Heuberger, P., der Hof, P.V.: Crutial aspects of zero-order hold LPV state-space system discretization. In: Proceedings of the 17th IFAC World Congress (WC), Seoul, South Korea (2008)

    Google Scholar 

  47. Villagra, J., d’Andréa Novel, B., Mounier, H., Pengov, M.: Flatness-based vehicle steering control strategy with SDRE feedback gains tuned via a sensitivity approach. IEEE Transaction on Control System Technology 15(3), 554–565 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles Poussot-Vassal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Poussot-Vassal, C., Sename, O., Fergani, S., Doumiati, M., Dugard, L. (2013). Global Chassis Control Using Coordinated Control of Braking/Steering Actuators. In: Sename, O., Gaspar, P., Bokor, J. (eds) Robust Control and Linear Parameter Varying Approaches. Lecture Notes in Control and Information Sciences, vol 437. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36110-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36110-4_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36109-8

  • Online ISBN: 978-3-642-36110-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics