Skip to main content

LPV Control Approaches in View of Comfort Improvement of Automotive Suspensions Equipped with MR Dampers

  • Chapter
Robust Control and Linear Parameter Varying Approaches

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 437))

Abstract

Many studies have shown the importance of automotive suspension systems in vehicle dynamics, see for instance [10], [26], [33] and references therein. Except for passive suspensions whose characteristics are invariant, the semi-active and active suspensions can change their properties by using controlled external signals (voltage, current...). This is why the latter suspensions have been studied intensively in recent years. However, up to now, only the semi-active suspensions are used widely in automotive industry. Indeed, compared with fully active suspensions, semi-active ones can achieve the main performance objectives (see [17], [27]) while they are smaller in weight and volume, cheaper in price, more robust and less energy consuming (see also [9], [10], [16], [19]).

So far, the control problem for semi-active suspensions has been tackled with many approaches during the last three decades. One of the first comfort-oriented control methods, successfully applied in commercial vehicles, is the Skyhook control proposed by Karnopp et al. [18]. Then, optimal control [12], [34], clipped optimal control [24], [36], [11], H  ∞  control [30], [31] or Model Predictive Control [4], [28] have been considered. Recently, two new control design methods for semiactive suspensions using the LPV techniques have been presented. The first one, proposed in [29], can be applied for all kinds of semi-active dampers where only the bounds on damping coefficients and on the damper forces are necessary for the controller design. In the other one, proposed in [7], the nonlinearities of the semi-active damper (the bi-viscosity and the hysteresis) are taken into consideration. The comparison of these two recent LPV-based techniques on a nonlinear Magneto-Rheological (MR) damper model is proposed this chapter.

The chapter is organized as follows: In section I, a brief bibliography concerning the modelling of semi-active dampers is given and two specific control-oriented models are detailed and will be used for the synthesis of the LPV controllers. In section II, the control problem of automotive suspension control is formulated in a common way so that the methods proposed in [29] (section III) and [7] (section IV) can be applied. Section V is devoted to numerical simulations on a nonlinear quarter car model. Some remarks and conclusions end this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Apkarian, P., Gahinet, P.: A convex characterization of gain scheduled \(\mathcal{H}_\infty\) controllers. IEEE Transaction on Automatic Control 40(5), 853–864 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aubouet, S.: Modélisation et commande de suspensions semi-actives soben. PhD thesis, INPG, GIPSA-lab, Grenoble, France (2010) (in English)

    Google Scholar 

  3. Bouc, R.: Forced vibration of mechanical systems with hysteresis. In: Proceedings of the Fourth Conference on Nonlinear Oscillation, Prague, Czechoslovakia, p. 315 (1967)

    Google Scholar 

  4. Canale, M., Milanese, M., Novara, C.: Semi-active suspension control using fast model-predictive techniques. IEEE Transaction on Control System Technology 14(6), 1034–1046 (2006)

    Article  Google Scholar 

  5. Do, A.L., Lozoya-Santos, J., Sename, O., Dugard, L., Ramirez-Mendoza, R.A., Morales-Menendez, R.: Modélisation et commande LPV d’un amortisseur magnéto-rhéologique. In: Proceedings de la Conference Internationale Francophone d’Automatique, Nancy, France (2010)

    Google Scholar 

  6. Do, A.L., Sename, O., Dugard, L.: An LPV control approach for semi-active suspension control with actuator constraints. In: Proceedings of the IEEE American Control Conference (ACC), Baltimore, Maryland, USA (2010)

    Google Scholar 

  7. Do, A.L., Sename, O., Dugard, L.: LPV modelling and control of semi-active dampers in automotive systems. In: Mohammadpour, C.S. (ed.) Control of Linear Parameter Varying Systems with Applications, ch. 15. Springer (2012)

    Google Scholar 

  8. Do, A.L., Spelta, C., Savaresi, S., Sename, O., Dugard, L., Delvecchio, D.: An LPV control approach for comfort and suspension travel improvements of semi-active suspension systems. In: Proceedings of the 49th IEEE Conference on Decision and Control (CDC), Atlanta, GA, pp. 5660–5665 (2010)

    Google Scholar 

  9. Fialho, I., Balas, G.: Road adaptive active suspension design using linear parameter varying gain scheduling. IEEE Transaction on Control System Technology 10(1), 43–54 (2002)

    Article  Google Scholar 

  10. Gillespie, T.D.: Fundamentals of Vehicle Dynamics. Society of Automotive Engineers Inc. (1992)

    Google Scholar 

  11. Giorgetti, N., Bemporad, A., Tseng, H., Hrovat, D.: Hybrid model predictive control application toward optimal semi-active suspension. International Journal of Robust and Nonlinear Control 79(5), 521–533 (2006)

    MathSciNet  MATH  Google Scholar 

  12. Giua, A., Melas, M., Seatzu, C., Usai, G.: Design of a predictive semiactive suspension system. Vehicle System Dynamics 41(4), 277–300 (2004)

    Article  Google Scholar 

  13. Gomes da Silva Jr., J.M., Limon, D., Alamo, T., Camacho, E.F.: Dynamic output feedback for discrete-time systems under amplitude and rate actuator constraints. IEEE Transaction on Automatic Control 53(10), 2367–2372 (2008)

    Article  MathSciNet  Google Scholar 

  14. Grimm, G., Hatfield, J., Postlethwaite, I., Teel, A., Turner, M., Zaccarian, L.: Antiwindup for stable linear systems with input saturation: An LMI-based synthesis. IEEE Transaction on Automatic Control 48(9), 1509–1525 (2003)

    Article  MathSciNet  Google Scholar 

  15. Guo, S., Yang, S., Pan, C.: Dynamic modeling of magnetorheological damper behaviors. Journal of Intelligent Material Systems and Structures 17, 3–14 (2006)

    Article  Google Scholar 

  16. Hrovat, D.: Survey of advanced suspension developments and related optimal control application. Automatica 33(10), 1781–1817 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ivers, D.E., Miller, L.R.: Experimental comparison of passive, semi-active on-off, and semi-active continuous suspensions. SAE Technical Paper 892484 (1989)

    Google Scholar 

  18. Karnopp, D., Crosby, M., Harwood, R.: Vibration control using semi-active force generators. Journal of Engineering for Industry 96, 619–626 (1974)

    Article  Google Scholar 

  19. Kiencke, U., Nielsen, L.: Automotive Control Systems for Engine, Driveline, and Vehicle. Springer (2000)

    Google Scholar 

  20. Kothare, M.V., Campo, P.J., Morari, M., Nett, C.N.: A unified framework for the study of anti-windup designs. Automatica 30, 1869–1883 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lozoya-Santos, J.J., Aubouet, S., Morales-Menendez, R., Sename, O., Ramirez-Mendoza, R.A., Dugard, L.: Simulation performance of a quarter of vehicle including an MR damper model with hysteresis. In: 7th Eurosim Congress on Modelling and Identification, Prague, Czech Republic (2010)

    Google Scholar 

  22. Lozoya-Santos, J.J., Morales-Menendez, R., Ramirez-Mendoza, R.A., Nino-Juarez, E.: Frequency and current effects in an MR damper. Int. J. Vehicle Autonomous Systems 7(3/4), 121–140 (2009)

    Article  Google Scholar 

  23. Lozoya-Santos, J.J., Ruiz-Cabrera, J.A., Morales-Menéndez, R., Ramírez-Mendoza, R., Diaz-Salas, V.: Building training patterns for modelling MR dampers. In: ICINCO-SPSMC, pp. 156–161 (2009)

    Google Scholar 

  24. Lu, J., DePoyster, M.: Multiobjective optimal suspension control to achieve integrated ride and handling performance. IEEE Transaction on Control System Technology 10(6), 807–821 (2002)

    Article  Google Scholar 

  25. Mulder, E.F., Tiwari, P.Y., Kothare, M.V.: Simultaneous linear and anti-windup controller synthesis using multiobjective convex optimization. Automatica 45, 805–811 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Pacejka, H.: Tyre and Vehicle Dynamics. Butterworth Heinemann (2005)

    Google Scholar 

  27. Patten, W.N., He, Q., Kuo, C.C., Liu, L., Sack, R.L.: Suppression of vehicle induced bridge vibration via hydraulic semi-active vibration dampers. In: Proceeding of the 1st World Conference on Structural Control, vol. 3, pp. 30–38 (1994)

    Google Scholar 

  28. Poussot-Vassal, C., Savaresi, S.M., Spelta, C., Sename, O., Dugard, L.: A methodology for optimal semi-active suspension systems performance evaluation. In: 2010 49th IEEE Conference on Decision and Control (CDC), pp. 2892–2897 (2010)

    Google Scholar 

  29. Poussot-Vassal, C., Sename, O., Dugard, L., Gáspár, P., Szabó, Z., Bokor, J.: New semi-active suspension control strategy through LPV technique. Control Engineering Practice 16(12), 1519–1534 (2008)

    Article  Google Scholar 

  30. Rossi, C., Lucente, G.: \(\mathcal{H}_\infty\) control of automotive semi-active suspensions. In: Proceedings of the 1st IFAC Symposium on Advances in Automotive Control (AAC), Salerno, Italy (2004)

    Google Scholar 

  31. Sammier, D., Sename, O., Dugard, L.: Skyhook and \(\mathcal{H}_\infty\) control of active vehicle suspensions: some practical aspects. Vehicle System Dynamics 39(4), 279–308 (2003)

    Article  Google Scholar 

  32. Savaresi, S., Bittanti, S., Montiglio, M.: Identification of semi-physical and black-box models: the case of MR-dampers for vehicles control. Automatica 41, 113–117 (2005)

    MathSciNet  MATH  Google Scholar 

  33. Savaresi, S., Poussot-Vassal, C., Spelta, C., Sename, O., Dugard, L.: Semi-Active Suspension Control for Vehicles. Elsevier, London (2010) 978-0-08-096678-6

    Google Scholar 

  34. Savaresi, S., Silani, E., Bittanti, S.: Acceleration driven damper (ADD): an optimal control algorithm for comfort oriented semi-active suspensions. ASME Transactions: Journal of Dynamic Systems, Measurements and Control 127(2), 218–229 (2005)

    Article  Google Scholar 

  35. Scherer, C., Gahinet, P., Chilali, M.: Multiobjective output-feedback control via LMI optimization. IEEE Transaction on Automatic Control 42(7), 896–911 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  36. Tseng, H., Hedrick, J.: Semi-active control laws - optimal and sub-optimal. Vehicle System Dynamics 23(1), 545–569 (1994)

    Article  Google Scholar 

  37. Wen, T.: Method for random vibration of hysteretic systems. Journal of Engineering Mechanics, ASCE 102(EM2), 249–263 (1976)

    Google Scholar 

  38. Wu, F., Grigoriadis, K.M., Packard, A.: Anti-windup controller design using linear parameter-varying control methods. International Journal of Control 73(12), 1104–1114 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  39. Zin, A.: Robust automotive suspension control toward global chassis control. PhD thesis, INPG, Laboratoire d’Automatique de Grenoble (new GIPSA-lab), Grenoble, France (2005) (in French)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anh-Lam Do .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Do, AL., Poussot-Vassal, C., Sename, O., Dugard, L. (2013). LPV Control Approaches in View of Comfort Improvement of Automotive Suspensions Equipped with MR Dampers. In: Sename, O., Gaspar, P., Bokor, J. (eds) Robust Control and Linear Parameter Varying Approaches. Lecture Notes in Control and Information Sciences, vol 437. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36110-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36110-4_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36109-8

  • Online ISBN: 978-3-642-36110-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics