Skip to main content

Brain SEEKING Circuitry in Neuroeconomics: A Unifying Hypothesis for the Role of Dopamine-Energized Arousal of the Medial Forebrain Bundle in Enthusiasm-Guiding Decision-Making

  • Chapter
  • First Online:
Neuroeconomics

Abstract

Affective shifts are critical factors in our decision-making with respect to all our survival concerns, including high cognitive ones such as those related to our economic investments and divestments. A critical emotional system, not commonly considered in neuroeconomics, is our primary process subcortical SEEKING system that regulates our exploratory-investigatory urges, including the eager anticipations of our higher mental processes. In economic decision-making, our SEEKING urge motivates us to consider the diverse opportunities and risks that are inherent in life-supportive decision-making. This state of mind, at normal levels of activity, energizes focus on cognitive details that can promote opportunities for success as well as avoid costly mistakes. However, excessive activity in this system may also promote faulty (addictive?) decision-making that is common in gambling, when hopes outweigh consideration of risks (as might be mediated by the cognitive representatives of FEAR and PANIC system). It is well known that all drug addictions are mediated by the feelings of euphoria that the SEEKING system can promote. Clearly, the ancient emotional systems of the brain need to be considered as motivators of neuroeconomic decisions, but they also need to be understood as primal motivations which need to be disciplined by higher decision-making capacities that emerge developmentally as a function of the losses and gains that have resulted from the vicissitudes of living in at times predictable but also unpredictable social (and physical) worlds. Without developmentally emergent cognitive discipline, the SEEKING system can promote delusional thinking.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aharon I, Etcoff N, Ariely D et al (2001) Beautiful faces have variable reward value: fMRI and behavioral evidence. Neuron 32:537–551

    Article  PubMed  Google Scholar 

  • Azim E, Mobbs D, Jo B et al (2005) Sex differences in brain activation elicited by humor. Proc Natl Acad Sci USA 102:16496–16501

    Article  PubMed  PubMed Central  Google Scholar 

  • Bechara A, Damásio H (2002a) Decision-making and addiction (Part I): Impaired activation of somatic states in substance-dependent individuals when pondering decision with negative future consequences. Neuropsychologia 40:1675–1689

    Article  PubMed  Google Scholar 

  • Bechara A, Damásio AR, Damásio H et al (1994) Insensitivity to future consequences following damage to human prefrontal cortex. Cognition 50:7–15  

    Article  PubMed  Google Scholar 

  • Bechara A, Dolan S, Denburg N, Hindes A, Anderson SW, Nathan PE (2001) Decision-making deficits, linked to a dysfunctional ventromedial prefrontal cortex, revealed in alcohol and stimulant abusers. Neuropsychologia 39(4):376–389

    Google Scholar 

  • Bechara A, Dolan S, Hindes, A (2002b) Decision-making and addiction (part II): myopia for the future or hypersensitivity to reward? Neuropsychologia 40:1690–1705

    Google Scholar 

  • Berns GS, McClure SM, Pagnoni G et al (2001) Predictability modulates human brain response to reward. J Neurosci 21(8):2793–2798

    PubMed  Google Scholar 

  • Berridge KC (1996) Food reward: Brain substrates of wanting and liking. Neurosci Biobehav Rev 20:1–26

    Article  PubMed  Google Scholar 

  • Berridge KC, Robinson TE (1998) What is the role of dopamine in reward: Hedonic impact, reward learning, or incentive salience? Brain Res Rev 28:309–369

    Google Scholar 

  • Bjork JM, Knutson B, Fong GW et al (2004) Incentive-elicited brain activation in adolescents: Similarities and differences from young adults. J Neurosci 24(8):1793–1802

    Article  PubMed  Google Scholar 

  • Cabanac M (1992) Pleasure: The common currency. J Theor Biol 155:173–200

    Google Scholar 

  • Cardinal RN, Pennicott DR, Sugathapala CL et al (2001) Impulsive choice induced in rats by lesions of the nucleus accumbens core. Science 292:2499–2501

    Article  PubMed  Google Scholar 

  • Carlezon WA, Devine DP, Wise RA (1995) Habit-forming actions of nomifensine in nucleus accumbens. Psychopharmacology 122(2):194–197

    Article  PubMed  Google Scholar 

  • Carr GD, White NM (1983) Conditioned place preference from intra-accumbens but not intra-caudate amphetamine injections. Life Sci 33:2551–2557

    Article  PubMed  Google Scholar 

  • Carr GD, White NM (1986) Anatomical disassociation of amphetamines rewarding and aversive effects: an intracranial micro-injection study. Psychopharmacology 89(3):340–346

    Article  PubMed  Google Scholar 

  • Coenen VA, Schlaepfer TE, Maedler B et al (2011) Cross-species affective functions of the medial forebrain bundle-Implications for the treatment of affective pain and depression in humans. Neurosci Biobehav Rev 35(9):1971–1981

    Article  PubMed  Google Scholar 

  • Coenen VA, Panksepp J, Hurwitz TA et al (2012) Human medial forebrain bundle (MFB) and anterior thalamic radiation (ATR): diffusion tensor imaging of two major subcortical pathways that may promote a dynamic balance of opposite affects relevant for understanding depression. J Neuropsychiatry Clin Neurosci 24:223–236

    Article  PubMed  Google Scholar 

  • Di Chiara G (1999) Drug addiction as dopamine-dependent associative learning disorder. Eur J Pharmacol 375:13–30

    Article  PubMed  Google Scholar 

  • Di Ciano P, Everitt BJ (2004) Direct interactions between the basolateral amygdala and nucleus accumbens core underlie cocaine-seeking behavior by rats. J Neurosci 24:7167–7173

    Article  PubMed  Google Scholar 

  • Ernst M, Paulus MP (2005) Neurobiology of decision-making: a selective review from a neurocognitive and clinical perspective. Biol Psychiatry 58(8):597–604

    Article  PubMed  Google Scholar 

  • Ernst M, Nelson EE, McClure EB et al (2004) Choice selection and reward anticipation: an fMRI study. Neuropsychologia 42:1585–1597

    Article  PubMed  Google Scholar 

  • Evans JBT, Stanovich KE (2013) Dual-process theories of higher cognition: advancing the debate. APS 8(3):223–241

    Google Scholar 

  • Everitt BJ, Robbins TW (2005) Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nat Neurosci 8(11):1481–1489

    Article  PubMed  Google Scholar 

  • Glimcher PW (2011a) Understanding dopamine and reinforcement learning: the dopamine reward prediction error hypothesis. Proc Natl Acad Sci USA 108:15647–15654

    Article  PubMed  PubMed Central  Google Scholar 

  • Glimcher PW (2011b) Foundations of neuroeconomic analysis. Oxford University Press, New York

    Google Scholar 

  • Glimcher PW, Fehr E (eds) (2013) Neuroeconomics: decision making and the brain. Academic Press, London

    Google Scholar 

  • Gottfried JA, O’Doherty J, Dolan RJ (2003) Appetitive and aversive olfactory learning in humans studied using event-related functional magnetic resonance imaging. J Neurosci 22(24):10829–10837

    Google Scholar 

  • Grant S, Contoreggi C, London ED (1999) Drug abusers show impaired performance in a laboratory test of decision-making. Neuropsychologia 38:1180–1187

    Article  Google Scholar 

  • Greene JD, Sommerville RB, Nystrom LE et al (2001) An fMRI investigation of emotional engagement in moral judgment. Science 293(5537):2105–2108

    Article  PubMed  Google Scholar 

  • Haber SN, Knutson B (2009) The reward circuit: linking primate anatomy and human imaging. Neuropsychopharmacology 35:4–26

    Article  PubMed Central  Google Scholar 

  • Hamman SB, Herman RA, Nolan CL et al (2004) Men and women differ in amygdala response to visual sexual stimuli. Nat Neurosci 7(4):411–416

    Article  Google Scholar 

  • Hart AS, Rutledge RB, Glimcher PW et al (2014) Phasic dopamine release in the rat nucleus accumbens symmetrically encodes a reward prediction error term. J Neurosci 2014 34(3):698–704

    Google Scholar 

  • Hayes DJ, Duncan NW, Xu J et al (2014) A comparison of neural responses to appetitive and aversive stimuli in humans and other mammals. Neurosci Biobehav Rev 45:350–368

    Google Scholar 

  • Hoebel BG, Monaco AP, Hernandez EF et al (1983) Self-infusion of amphetamine directly into the brain. Psychopharmacology 81:158–163

    Article  PubMed  Google Scholar 

  • Hutcheson DM, Parkinson JA, Robbins TW et al (2001) The effects of nucleus accumbens core and shell lesions on inravenous heroin self-administration and the acquisition of drug-seeking behavior under a second-order schedule of heroin reinforcement. Psychopharmacology 153:464–472

    Article  PubMed  Google Scholar 

  • Ikemoto S, Panksepp J (1996) Dissociations between appetitive and consummatory responses by pharmacological manipulations of reward-relevant brain regions. Behav Neurosci 110:331–345

    Article  PubMed  Google Scholar 

  • Ikemoto S, Panksepp J (1999) The role of nucleus accumbens dopamine in motivated behavior: a unifying interpretation with special reference to reward-seeking. Brain Res Brain Res Rev 31:6–41

    Article  PubMed  Google Scholar 

  • Ikemoto S, Glazier BS, Murphy JM et al (1997) Role of D1 and D2 receptors in the nucleus accumbens in mediating reward. J Neurosci 17:8580–8587

    PubMed  Google Scholar 

  • Ito R, Robbins TW, Everitt BJ (2004) Differential control over cocaine-seeking behavior by nucleus accumbens core and shell. Nat Neurosci 7:389–397

    Article  PubMed  Google Scholar 

  • Jaffe JH (1992) Current concepts of addiction. In: O’Brien CP, Jaffe JH (eds) Addictive states. Raven Press, New York

    Google Scholar 

  • Kahneman D (2002) Maps of bounded rationality: a perspective on intuitive judgement and choice [Prize Lecture]. Retrieved from: http://www.nobelprize.org/nobel_prizes/economic-sciences/laureates/2002/kahnemann-lecture.pdf

  • Kahneman D, Frederick S (2007) Frames and brains: elicitation and control of response tendencies. Trends Cogn Sci 11(2):45–46

    Google Scholar 

  • Knutson B, Cooper JC (2005) Functional magnetic resonance imaging of reward prediction. Curr Opin Neurol 18:1–7

    Article  Google Scholar 

  • Knutson B, Greer SM (2008) Anticipatory affect: neural correlates and con- sequences for choice. Philos Trans R Soc Lond B Biol Sci 363:3771–3786

    Article  PubMed  PubMed Central  Google Scholar 

  • Knutson B, Burgdorf J, Panksepp J (1998) Anticipation of play elicits vocalizations in juvenile rats. J Comp Psychol 112:65–73

    Article  PubMed  Google Scholar 

  • Knutson B, Burgdorf J, Panksepp J (1999) High-frequency ultrasonic vocalizations index conditioned pharmacological reward in rats. Physiol Behav 66:639–643

    Article  PubMed  Google Scholar 

  • Knutson B, Westdorp A, Kaiser E et al (2000) FMRI visualization of brain activity during a monetary incentive delay task. Neuroimage 12:20–27

    Article  PubMed  Google Scholar 

  • Knutson B, Adams CM, Fong GW et al (2001a) Anticipation of increasing monetary reward selectively recruits nucleus accumbens. J Neurosci 21:159–164

    Google Scholar 

  • Knutson B, Fong GW, Adams CM et al (2001b) Dissociation of reward anticipation and outcome with event-related fMRI. NeuroReport 12(17):3681–3687

    Article  Google Scholar 

  • Knutson B, Burgdorf J, Panksepp J (2002) Ultrasonic vocalizations as indices of affective states in rat. Psychol Bull 128:961–977

    Article  PubMed  Google Scholar 

  • Knutson B, Taylor J, Kauman M et al (2005) Distributed neural representation of expected value. J Neurosci 25:4806–4812

    Article  PubMed  Google Scholar 

  • LeGros Clark WE, Beattie J, Riddoch G et al (1938) The hypothalamus, morphological, functional, clinical and surgical aspects. Edinburgh: Oliver and Boyd

    Google Scholar 

  • Letchworth SR, Nader MA, Smith HR et al (2001) Progression of changes in dopamine transporter binding site density as a result of cocaine self-administration in rhesus monkeys. J Neurosci 21:2799–2807

    PubMed  Google Scholar 

  • Levine DS (2009) Brain pathways for cognitive-emotional decision-making in the human animal. Neural Netw 22:286–293

    Article  PubMed  Google Scholar 

  • Liu X, Strecker RE, Brener J (1998) Dopamine depletion in nucleus accumbens influences locomotion but not force and timing of operant responding. Pharmacol Biochem Behav 59:737–745

    Article  PubMed  Google Scholar 

  • McClure SM, Berns GS, Montague PR (2003) Temporal prediction errors in a passive learning task activate human striatum. Neuron 38:339–346

    Article  PubMed  Google Scholar 

  • Minati L, Grisoli M, Seth AK et al (2012) Decision-making under risk: a graph-based network analysis using functional MRI. NeuroImage 60:2191–2205

    Article  PubMed  Google Scholar 

  • Montague PR, Dayan P, Sejnowski TJ (1996) A framework for mesencephalic dopamine systems based on predictive Hebbian learning. J Neurosci 16:1936–1947

    PubMed  Google Scholar 

  • Nader MA, Daunais JB, Moore T et al (2002) Effects of cocaine self-administration on striatal dopamine systems in rhesus monkeys: Initial and chronic exposure. Neuropsychopharmacology 27:35–46

    Article  PubMed  Google Scholar 

  • O’Doherty JP, Deichmann R, Critchley HD et al (2002) Neural responses during anticipation of a primary taste reward. Neuron 33:815–826

    Article  PubMed  Google Scholar 

  • O’Doherty J, Critchley H, Deichmann R, Dolan RJ (2003) Dissociating valence of outcome from behavioral control in human orbital and ventral prefrontal cortices. J Neurosci, 23(21):7931–7939

    Google Scholar 

  • O’Doherty J, Dayan P, Schultz J et al (2004) Dissociable roles of the ventral and dorsal striatum in instrumental conditioning. Science 304:452–454

    Article  PubMed  Google Scholar 

  • Olds J, Milner P (1954) Positive reinforcement produced by electrical stimulation of septal area and other regions of rat brain. J Comp Physiol Psychol 47(6):419–427

    Article  PubMed  Google Scholar 

  • Panksepp J (1981) Hypothalamic integration of behavior: rewards, punishments, and related psychobiological process. In: Morgane PJ, Panksepp J (Eds.) Handbook of the hypothalamus, vol 3, Part A. Behavioral studies of the hypothalamus. New York: Marcel Dekker, pp 289–487

    Google Scholar 

  • Panksepp J (1982) Toward a general psychobiological theory of emotions. Behav Brain Sci 5:407–467

    Article  Google Scholar 

  • Panksepp J (1998) Affective neuroscience: the foundation of human and animal emotions. Oxford University Press, New York

    Google Scholar 

  • Panksepp J (2002) The MacLean legacy and some modern trends in emotion research. In: Cory GA, Gardner R Jr. (eds) The evolutionary neuroethology of Paul MacLean. Praeger, Westport, CT, pp ix–xxvii

    Google Scholar 

  • Panksepp J (2010) Affective neuroscience of the emotional BrainMind: evolutionary perspectives and implications for understanding depression. Dialogues Clin Neurosci 12(4):533–545

    PubMed  PubMed Central  Google Scholar 

  • Panksepp J (2011a) Cross-species affective neuroscience decoding of the primal affective experiences of humans and related animals. PLoS ONE 6(9):e21236

    Article  PubMed  PubMed Central  Google Scholar 

  • Panksepp J (2011b) The basic emotional circuits of mammalian brains: do animals have affective lives? Neurosci Biobehav Rev 35:1791–1804

    Article  PubMed  Google Scholar 

  • Panksepp J (2015)  Affective preclinical modeling of psychiatric disorders: taking imbalanced primal emotional feelings of animals seriously in our search for novel antidepressants. Dialogues in Clin Neurosci 17:363–379

    Google Scholar 

  • Panksepp J (2016)  The cross-mammalian neurophenomenology of primal emotional affects: From animal feelings to human therapeutics. J Comp Neurol 524:1624–1635

    Google Scholar 

  • Panksepp J, Biven L (2012) The archaeology of mind: neuroevolutionary origins of human emotions. W. W. Norton & Company, New York

    Google Scholar 

  • Panksepp J, Wright JS, Döbrössy MD et al (2014) Affective neuroscience strategies for understanding and treating depressions: from preclinical models to novel therapeutics. J Clinical Psych 2014(2):472–494

    Google Scholar 

  • Park WK, Bari AA, Jey AR et al (2002) Cocaine administered into the medial prefrontal cortex reinstates cocaine-seeking behavior by increasing AMPA receptor-mediated glutamate transmission in the nucleus accumbens. J Neurosci 22(7):2916–2925

    PubMed  Google Scholar 

  • Phillips GD, Robbins TW, Everitt BJ (1994) Bilateral intra-accumbens self-administration of amphetamine: antagonism with intra-accumbens SCH-23390 and sulpiride. Psychopharmacology 114:477–485

    Article  PubMed  Google Scholar 

  • Platt ML, Huettel SA (2008) Risky business: The neuroeconomics of decision-making under uncertainty. Nat Neurosci 11:398–403

    Article  PubMed  PubMed Central  Google Scholar 

  • Ramnani N, Elliot R, Athwal BS et al (2004) Prediction error for free monetary reward in the human prefrontal cortex. Neuroimage 23:777–786

    Article  PubMed  Google Scholar 

  • Reynolds SM, Berridge KC (2001) Fear and feeding in the nucleus accumbens shell: rostrocaudal segregation of GABA-elicited defensive behavior versus eating behavior. J Neurosci 21:3261–3270

    PubMed  Google Scholar 

  • Reynolds SM, Berridge KC (2002) Positive and negative motivation in nucleus accumbens shell: bivalent rostrocaudal gradients for GABA-elicited eating, taste, and “liking”/”disliking” reactions, place preference/avoidance and fear. J Neurosci 22:7308–7320

    PubMed  Google Scholar 

  • Reynolds SM, Berridge KC (2003) Glutamate motivational ensembles in nucleus accumbens: rostrocaudal shell gradients of fear and feeding. Eur J Neurosci 17:2187–2200

    Article  PubMed  Google Scholar 

  • Robinson TE, Berridge KC (2000) The psychology and neurobiology of addiction: an incentive-sensitization view. Addiction 95(2):91–117

    Google Scholar 

  • Rogers RD, Ramnani N, MacKay C et al (2004) Distinct portions of anterior cingulate cortex and medial prefrontal cortex are activated by reward processing in separable phases of decision-making cognition. Biol Psychiatry 55:594–602

    Article  PubMed  Google Scholar 

  • Rolls ET (2014) Emotion and decision-making explained. Oxford University Press, Oxford

    Google Scholar 

  • Salamone JD (1994) The involvement of nucleus accumbens dopamine in appetitive and aversive motivation. Behav Brain Res 61:117–133

    Article  PubMed  Google Scholar 

  • Salamone JD, Cousins MS, Snyder BJ (1997) Behavioral functions of nucleus accumbens dopamine: empirical and conceptual problems with the anhedonia hypothesis. Neurosci Biobehav Rev 21:341–359

    Article  PubMed  Google Scholar 

  • Salamone JD, Correa M, Mingote SM et al (2005) Beyond the reward hypothesis: alternative functions of nucleus accumbens dopamine. Curr Opin Pharmacol 5:34–41

    Article  PubMed  Google Scholar 

  • Salamone JD, Correa M, Farrar A et al (2007) Effort-related functions of nucleus accumbens dopamine and associated forebrain circuits. Psychopharmacology 191:461–482

    Article  PubMed  Google Scholar 

  • Schlaepfer TE, Bewernick B, Kayser S et al (2013) Rapid effects of deep brain stimulation for treatment resistant depression. Biol Psychiat 73:1204–1212

    Article  PubMed  Google Scholar 

  • Schoenbaum G, Setlow B (2003) Lesions of nucleus accumbens disrupt learning about aversive outcomes. J Neurosci 23(30):9833–9841

    PubMed  Google Scholar 

  • Schultz W, Apicella P, Ljungbergb T (1993) Responses of monkey dopamine neurons to reward and conditioned stimuli during successive steps of learning a delayed response task. J Neurosci 13(3):900–913

    PubMed  Google Scholar 

  • Seymour B, Daw N, Dayan P et al (2007) Differential encoding of losses and gains in the human striatum. J Neurosci 27:4826–4831

    Article  PubMed  PubMed Central  Google Scholar 

  • Siddiqui SV, Chatterjee U, Kumar D (2008) Neuropsychology of prefrontal cortex. Indian J Psychiatry 50(3):202–208

    Article  PubMed  PubMed Central  Google Scholar 

  • Singer T, Kiebel SJ, Winston JS et al (2004) Brain responses to the acquired moral status of faces. Neuron 41:653–662

    Article  PubMed  Google Scholar 

  • Slovic P, Peters E, Finucane ML et al (2005) Affect, risk, and decision-making. Health Psychol 24(4):35–40

    Article  Google Scholar 

  • Sokolowski JD, Salamone JD (1998) The role of accumbens dopamine in lever pressing and response allocation: Effects of 6-OHDA injected into core and dorsomedial shell. Pharmacol Biochem Behav 59:557–566

    Article  PubMed  Google Scholar 

  • Solms M, Panksepp J (2012) The “Id” knows more than the “Ego” admits: Neuropsychoanalytic and primal consciousness perspectives on the interface between affective and cognitive neuroscience. Brain Sci 2:147–175

    Article  PubMed  PubMed Central  Google Scholar 

  • Stanovich KE, West RF (2000) Individual differences in reasoning: Implications for the rationality debate. Behav Brain Sci 23:645–726

    Article  PubMed  Google Scholar 

  • Tanaka SC, Doya K, Okada G et al (2004) Prediction of immediate and future rewards differentially recruits cortico-basal loops. Nat Neurosci 7:887–893

    Article  PubMed  Google Scholar 

  • Teitelbaum P, Epstein AN (1962) The lateral hypothalamic syndrome: Recovery of feeding and drinking after lateral hypothalamic lesions. Psychol Rev 69:74–90

    Article  PubMed  Google Scholar 

  • White NM, Packard MG, Hiroi N (1991) Place conditioning with dopamine D1 and D2 agonists injected peripherally or into nucleus accumbens. Psychopharmacology 103:271–276

    Article  PubMed  Google Scholar 

  • Wright JS, Panksepp J (2012) An evolutionary framework to understand foraging, wanting, and desire: the neuropsychology of the SEEKING System. Neuropsychoanalysis 14:5–39

    Article  Google Scholar 

  • Zink CF, Pagnoni G, Martin-Skurski ME et al (2004) Human striatal responses to monetary reward depend on saliency. Neuron 42:509–517

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaak Panksepp .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Panksepp, J., Wilson, C.G. (2016). Brain SEEKING Circuitry in Neuroeconomics: A Unifying Hypothesis for the Role of Dopamine-Energized Arousal of the Medial Forebrain Bundle in Enthusiasm-Guiding Decision-Making. In: Reuter, M., Montag, C. (eds) Neuroeconomics. Studies in Neuroscience, Psychology and Behavioral Economics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35923-1_13

Download citation

Publish with us

Policies and ethics