Skip to main content

AFM Characterization of Semiconductor Line Edge Roughness

  • Chapter
Applied Scanning Probe Methods

Part of the book series: NanoScience and Technology ((NANO))

Abstract

Atomic force microscopy (AFM) is an important technique for measurement of the surface roughness and surface features of high technology surfaces such as semiconductor chips and micro-optics. One of the key measurands is the linewidth of semiconductor features [1]. A class of AFM instruments often called CD-AFM has been developed for the purpose of measuring linewidth accurately (Fig. 9.1). The smallest linewidth or hole diameter on a semiconductor circuit is called the critical dimension or CD. Recently, a requirement has arisen in the semiconductor industry for control, specification, and measurement of line edge roughness (LER) for functional semiconductor features, such as processor gates [2–5]. As feature dimensions become steadily smaller, the LER of a single gate is becoming a significant fraction of the gate length itself. Hence, the LER is expected to have a significant effect on properties of the gate such as leakage current. The International Technology Roadmap for Semiconductors (ITRS) [6] specifies a physical gate length for 2002 of 75 nm and a maximum LER of 3.9 nm. The effect of LER on the function of an electronic gate has been modeled by several studies and these models have been verified experimentally. This work has led in part to a succinct specification of LER requirements for current and future generations of semiconductor circuits. This specification has been inserted into the International Technology Roadmap for Semiconductors (ITRS) [6].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Martin Y, Wickramasinghe HK (1995) J Vac Sci Technol B 13:2335

    Article  Google Scholar 

  2. Diaz CH, Tao H-J, Ku Y-C, Yen A, Young K (2001) IEEE Electron Dev Lett 22:287

    Article  Google Scholar 

  3. Oldiges P, Lin Q, Petrillo K, Sanchez M, Ieong M, Hargrove M (2000) IEEE Electron Dev Lett 21: 131

    Google Scholar 

  4. Patterson K, Sturtevant JL, Alvis J, Benavides N, Bonser D, Cave N, Nelson-Thomas C, Taylor B, Turnquest K (2001) Experimental determination of the impact ofpolysilicon LER on sub-l00-nm transistor performance. In: Sullivan NT (ed) Proc SPIE metrology, inspection, and process control for microlithography XV v4344. SPIE Press, Bellingham WA, p 809

    Chapter  Google Scholar 

  5. Xiong S, Bokor J, Xiang Q, Fisher P, Dudley I, Rao P (2002) Study of gate line edge roughness effects in 50 nm bulk MOSFET devices. In: Herr DJC (ed) Proc SPIE metrology, inspection, and process control for micro lithography XVI v4689. SPIE Press, Bellingham WA, p 733

    Chapter  Google Scholar 

  6. International Technology Roadmap for Semiconductors (ITRS) (2001) Semiconductor Industry Association. San Jose CA

    Google Scholar 

  7. Nelson C, Palmateer SC, Forte AR, Cann SC, Deneault S, Lyszczarz TM (1999) Metrology methods for quantifying edge roughness II. In: Singh B (ed) Proc SPIE metrology, inspection, and process control for microlithography v3677. SPIE Press, Bellingham; Nelson C, Palmateer SC, Forte AR, Lyszczarz TM (1999) J Vac Sci Technol B 17:2488

    Google Scholar 

  8. Rugar D, Hansma P (1990) Phys Today 43–10:23

    Article  Google Scholar 

  9. Griffith JE, Grigg DA (1993) Dimensional metrology with scanning probe microscopes. J Appl Phys 74:R83

    Article  Google Scholar 

  10. Marchman HM, Griffith JE (2001) Scanned probe microscope dimensional metrology. In: Diebold AC (ed) Handbook of silicon semiconductor metrology. Marcel Dekker, New York NY, chap 15

    Google Scholar 

  11. Church EL, Jenkinson HA, Zavada JM (1979) Optical Eng 18:125

    Article  Google Scholar 

  12. Bennett JM, Mattsson L (1989) Introduction to surface roughness and scattering. Optical Society of America, Washington DC, pp 27–31

    Google Scholar 

  13. Vorburger TV, Marx E, Lettieri TR (1993) Applied Optics 32:3401

    Article  Google Scholar 

  14. Bhushan B (1999) Introduction — measurement techniques and applications. In: Bhushan B (ed) Handbook of micro/nanotribology. CRC Press, Boca Raton FL, chap 1

    Google Scholar 

  15. Whitehouse DJ (1982) Wear 83:75

    Article  Google Scholar 

  16. Reynolds GW, Taylor JW (1999) JVac Sci Technol B 17:334

    Article  Google Scholar 

  17. Postek MT (1994) Scanning electron microscope metrology. In: Monahan KM (ed) Handbook of critical dimension metrology and process control. SPIE Optical Engineering Press, Bellingham WA, p 46

    Google Scholar 

  18. ASTM F 1811–97 (1997) Standard practice for estimating the power spectral density function and related finish parameters from surface profile data. American Society of Testing and Materials, Philadelphia PA

    Google Scholar 

  19. ASME/ANSI B46.1 (1995) Surface texture (surface roughness, waviness, and lay). American Society of Mechanical Engineers, New York NY

    Google Scholar 

  20. Denk W, Pohl DW (1991) Appl Phys Lett 59:2171

    Article  Google Scholar 

  21. Nyyssonen D, Landstein L, Coombs E (1991) J Vac Sci Technol B 9:3612

    Article  Google Scholar 

  22. Martin Y, Williams CC, Wickramasinghe HK (1987) J Appl Phys 61:4723

    Article  Google Scholar 

  23. Martin Y, Wickramasinghe HK (1994) Appl Phys Lett 64:2498

    Article  Google Scholar 

  24. Vasile MJ, Grigg D, Griffith JE, Fitzgerald E, Russell PE (1991) JVac Sci Technol B 6:3569

    Article  Google Scholar 

  25. Fu J, Tsai VW, Koning R, Dixson RG, Vorburger TV (1999) Nanotechnology 10:428

    Article  Google Scholar 

  26. Hinsberg W, Houle FA, Hoffnagle J, Sanchez M, Wallraff G, Morrison M, Frank S (1998) J Vac Sci Technol B 16:3689

    Article  Google Scholar 

  27. Somervell MH, Fryer DS, Osborn B, Patterson K, Byers J, Willson CG (2000) J Vac Sci Technol B 18:2551

    Article  Google Scholar 

  28. Patsis GP, Tserepi A, Raptis I, Glezos N, Gogolides E, Valamontes ES (2000) J Vac Sci Technol B 18:3292

    Article  Google Scholar 

  29. Yoshimura T, Shiraishi H, Yamamoto J, Okazaki S (1993) Appl Phys Lett 63:764

    Article  Google Scholar 

  30. Yamaguchi T, Namatsu H, Nagase M, Yamazaki K, Kurihara K (1997) Appl Phys Lett 71: 2388

    Article  Google Scholar 

  31. He D, Cerrina F (1998) J Vac Sci Technol B 16:3748

    Article  Google Scholar 

  32. Kant A, Talor G, Samarakone N (1999) Quantitative line edge roughness characterization for the sub-0.25 DUV lithography. In: Singh B (ed) Proc SPIE metrology, inspection, and process control for microlithography v3677. SPIE Press, Bellingham WA, p 35

    Google Scholar 

  33. Nagase M, Namatsu K, Kurihara K, Iwadate K, Murase K, Makino T (1996) Microelectr Eng 30:419

    Article  Google Scholar 

  34. Reynolds GW, Taylor JW (1999) J Vac Sci Technol B 17:2723

    Article  Google Scholar 

  35. Meyyappan A, Klos M, Muckenhirn S (2001) Foot (bottom corner) measurement of a structure with SPM, In: Sullivan NT (ed) Proc SPIE metrology, inspection, and process control for micro lithography XV v4344. SPIE Press, BellinghamWA, p 733

    Chapter  Google Scholar 

  36. Walch K, Meyyappan A, Muckenhirn S, Margail J (2001) Measurement of sidewall, line and line-edge roughness with scanning probe microscopy. In: Sullivan NT (ed) Proc SPIE metrology, inspection, and process control for microlithography XV v4344. SPIE Press, Bellingham WA, p 726

    Chapter  Google Scholar 

  37. Rasgon S, Goldfarb D, Mahorowala A (2002) Personal communication. “The authors also gratefully acknowledge DARPA for financial support under contract No. N66001-00-C8803”

    Google Scholar 

  38. Shin J, Han G, Ma Y, Moloni K, Cerrina F (2001) JVac Sci Technol B 19:2890

    Article  Google Scholar 

  39. Nguyen CV, Stevens RMD, Barber J, Han J, Meyyappan M, Sanchez MI, Larson C, Hinsberg WD (2002) Appl Phys Lett 81:901

    Article  Google Scholar 

  40. Nguyen CV, Chao KJ, Stevens RMD, Delzeit L, Cassell A, Han J, Meyyappan M (2001) Nanotechnology 12:363

    Article  Google Scholar 

  41. Nguyen CV, Stevens RMD, Meyyappan M (2001) Personal communications

    Google Scholar 

  42. Mancevski V, McClure PF (2002) Development of a dual-probe Caliper TM CD-AFM for near model-independent nanometrology. In: Herr DJC (ed) Proc SPIE metrology, inspection, and process control for micro lithography XVI v4689. SPIE Press, Bellingham WA, p 83

    Chapter  Google Scholar 

  43. Vorburger TV, Dagata JA, Wilkening G, Iizuka K (1998) Characterization of surface topography. In: Czanderna AW, Madey TE, Powell CJ (eds) Methods of surface characterization, vol 5. Plenum Press, New York NY

    Google Scholar 

  44. Winkelmeier S, Sarstedt M, Ereken M, Goethals, M, Ronse K (2001) Microelectron Eng 57–8:665

    Article  Google Scholar 

  45. Fang SJ, Haplepete S, Chen W, Helms CR, Edwards H (1997) J Appl Phys 82:5891

    Article  Google Scholar 

  46. Ishida M, Kobayashi K, Fujita J, Ochiai Y, Yamamoto H, Tono S (2002) Jpn J Appl Phys 41:4228

    Article  Google Scholar 

  47. Eytan G, Dror O, Ithier L, Florin B, Lamouchi Z, Martin N (2002) Amplitude and spatial frequency characterization of line edge roughness using CD-SEM. In: Herr DJC (ed) Proc SPIE metrology, inspection, and process control for microlithography XVI v4689. SPIE Press, Bellingham WA, p 347

    Chapter  Google Scholar 

  48. Yoshizawa M, Moriya S (2000) JVac Sci Technol B 18:3105

    Article  Google Scholar 

  49. Yoshizawa M, Moriya S (2001) J Vac Sci Technol B 19:2488

    Article  Google Scholar 

  50. Raja J, Muralikrishnan B, Fu S (2002) Precision Eng 26:222

    Article  Google Scholar 

  51. Chen X, Raja J, Simanapalli S (1995) Int J Machine Tools Manuf 35:231

    Article  Google Scholar 

  52. Postek MT, Vladár AE (2001) Critical-dimension metrology and the scanning electron microscope. In: Diebold AC (ed) Handbook of silicon semiconductor metrology. Marcel Dekker, New York NY, chap 14

    Google Scholar 

  53. Wu W-I, Lin EK, Lin Q, Angelopolous M (2000) Small angle neutron scattering measurements of nanoscale lithographic features. J Appl Phys 88:7298

    Article  Google Scholar 

  54. Constantoudis Y, Gogolides E, Patsis GP, Tserepi A, Valamontes ES (2001) J Vac Sci Technol B 19:2694

    Article  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Orji, N.G., Sanchez, M.I., Raja, J., Vorburger, T.V. (2004). AFM Characterization of Semiconductor Line Edge Roughness. In: Applied Scanning Probe Methods. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35792-3_9

Download citation

Publish with us

Policies and ethics