Skip to main content

Visualization of Polymer Structures with Atomic Force Microscopy

  • Chapter
Applied Scanning Probe Methods

Part of the book series: NanoScience and Technology ((NANO))

Abstract

In last two decades, microscopic characterization of materials has significantly advanced with the inventions of scanning tunneling microscopy (STM) and atomic force microscopy (AFM) [1, 2]. In STM, tunneling current between a sharp metallic probe placed in close proximity to a conducting surface is used as a probing interaction. Tunneling current in the range of nanoamperes originates when a bias voltage is applied between this probe and the conducting sample. Rastering of the probe is performed over the surface at separations small enough for stable detection of tunneling current between these two electrodes. This is realized with high accuracy using a three-dimensional piezoceramic actuator. In scanning tunneling microscopes, a feedback mechanism keeps the tip-sample current constant in every surface location by adjusting the vertical tip-sample separation. Changes in the applied voltage to the piezoactuator, which are needed to adjust the tip-sample separation, are presented in the height image. This image, to a first approximation, reproduces surface topography of the sample. Atomic-scale resolution, routinely achieved in STM, has made it an invaluable addition to the family of microscopic techniques. Another remarkable feature of such microscopes is their ability to examine samples not only in an ultrahigh (DRV) vacuum but also at ambient conditions and even under liquids. At present, STM has become a mature technique that is widely applied to the visualization of atomic structures and atomic-scale processes on different substrates, especially in DRV conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Binnig G, Rohrer H, Gerber C, Weibel E (1982) Phys Rev Lett 49:57

    Article  Google Scholar 

  2. Binnig G, Quate C, Gerber C (1986) Phys Rev Lett 56:930

    Article  Google Scholar 

  3. Magonov SN, Whangbo M-H (1996) Surface analysis with STM andAFM. VCH. Weinheim

    Google Scholar 

  4. Landman U, Luedke WD, Nitzan A (1989) Surf Sci Let 10:L177

    Google Scholar 

  5. Weinsenhorn AL, Maivald P, Butt H-J, Hansma PK (1992) 45: 11226

    Google Scholar 

  6. Zhong Q, Innis D, Kjoller K, Elings VB (1993) Surf Sci Let (1993) 290:L688

    Google Scholar 

  7. Sugawara J, Ohta M, Ueyama H, Morita S (1995) Science 270:1646

    Article  Google Scholar 

  8. VanLandingham MR, McKnight SH, Palmese GR, Elings JR, Huang X, Bogetti TA, Eduljee RF, Gillespie JW Jr (1997) J Adhesion 64:31

    Article  Google Scholar 

  9. Grandbois M, Beyer M, Rief M, Clausen-Schaumann H, Gaub HE (1999) Science 283:1727

    Article  Google Scholar 

  10. Heinz WF, Hoh JH (1999) Trends Biotechnol 17:143

    Article  Google Scholar 

  11. Maivald P, Butt H-J, Gould SAC, Prater CB, Drake B, Gurley JA, Elings VB, Hansma PK (1991) Nanotechnology 2:13

    Article  Google Scholar 

  12. Hoeper R, Gesang T, Possart W, Hennemann O-D, Boseck S (1995) Ultramicroscopy 60: 17

    Article  Google Scholar 

  13. Magonov SN (2000) Atomic force microscopy in analysis of polymers. In: Meyers RA (ed) Encyclopedia of analytical chemistry. Wiley, Chichester, p 7432

    Google Scholar 

  14. Cleveland JP, Anczykowski B, Schmid AE, Elings VB (1998) Appl Phys Lett 72:2613

    Article  Google Scholar 

  15. Wang L (1998) Appl Phys Lett 73:3781

    Article  Google Scholar 

  16. Bar G, Brandsch R, Whangbo M-H (1998) Surf Sci Lett 411:802

    Article  Google Scholar 

  17. Ivanov D, Daniels R, Magonov S (2001) Exploring the high temperature AFM and its use for studies polymers. Application note. Digital InstrumentsNeeco Metrology Group, Santa BarbaraCA, USA

    Google Scholar 

  18. Ivanov DA, Amalou Z, Magonov SN (2001) Macromolecules 34:8944

    Article  Google Scholar 

  19. Fasolka MJ, Mayes AM, Magonov S (2001) Ultramicroscopy 90:21

    Article  Google Scholar 

  20. Kumaki J, Nishikawa Y, Hashimoto T (1996) JACS 118:3321

    Article  Google Scholar 

  21. Lyubchenko YL, Jacobs BL, Lindsay SM (1992) Nucleic Acid Res 20:3983

    Article  Google Scholar 

  22. Percec V, Ahn C-H, Ungar G, Yeardley DSP, Möller M, Sheiko S (1998) Nature 391:161

    Article  Google Scholar 

  23. Frey H, Lach C, Lorenz K (1998) Adv Mater 10:279

    Article  Google Scholar 

  24. Ponomarenko SA, Boiko NI, Shibaev VP, Magonov SN (2000) Langmuir 16:5487

    Article  Google Scholar 

  25. Gerle M, Fischer K, Schmidt M, Roos S, Mueller AHE, Sheiko SS, Prokhorova SA, Moller M (1999) Macromolecules 32:2629

    Article  Google Scholar 

  26. Prokhorova SA, Sheiko SS, Ahn C-H, Percec V, Möller M (1999) Macromolecules 32:2653

    Article  Google Scholar 

  27. Prokhorova SA, Sheiko SS, Mourran A, Azumi R, Beginn U, Zipp G, Ahn C-H, Holerca MN, Percec V, Möller M (2000) Langmuir 16:6862

    Article  Google Scholar 

  28. Sheiko SS, Möller M (2001) Chern Revs 101:4099

    Article  Google Scholar 

  29. Prokhorova SA, Sheiko SS, Moeller M, Ahn C-H, Percec V (1998) Macromol Rapid Commun 19:366

    Article  Google Scholar 

  30. Percec V, Holerca MN, Magonov SN, Yeardley DJP, Ungar G, Duan H, Hudson SD (2001) Biomacromolecules 2:706

    Article  Google Scholar 

  31. Percec V, Obata M, Rudick JC, De BB, Glodde M, Bera TK, Magonov SN, Balagurusamy VSK, Heiney PA (2002) J Polym Sci Polym Chern Ed 40:3509

    Article  Google Scholar 

  32. Tartsch B, Magonov SN, Möller M (2003) Adv Mater (in press)

    Google Scholar 

  33. Patil R, Kim S-J, Smith E, Reneker DH, Weisenhorn AL (1991) Polym Commun 64: 117

    Google Scholar 

  34. Patil R, Reneker DH (1994) Polymer 35:1909

    Article  Google Scholar 

  35. Nie H-Y, Motomatsu M, Mizutani W, Tokumoto H (1996) Polymer 37:183

    Article  Google Scholar 

  36. Boyd RD, Badyal JPS (1999) Adv Mater 9:895

    Article  Google Scholar 

  37. Geil PH (1993) Polymer single crystals. Wiley

    Google Scholar 

  38. Barham P (1993) Crystallization and morphology of semicrystalline polymers. In: Cahn RW, Haasen P, Kramer EJ, Thomas EL (eds) Materials science and technology, structure and properties of polymers. VCH, vol 12, p 153

    Google Scholar 

  39. Magonov SN, Verina NA (2003) Langmuir 19:500

    Article  Google Scholar 

  40. Magonov SN, Verina NA, Ungar G, Reneker DH, Ivanov DA (2003) Macromolecules 36: 5637

    Article  Google Scholar 

  41. Wunderlich B (1973) Macromolecular physics, vol 1, (1976) vol 2, (1980) vol 3. Academic Press

    Google Scholar 

  42. Craemer K, Wawkuschewski A, Domb A, Cantow H-J, Magonov SN (1995) Polym Bull 35:457

    Article  Google Scholar 

  43. Tian M, Loos J (2001) J Polym Sci Phys Ed 39:763

    Article  Google Scholar 

  44. Kanig G (1991) Colloid Polym Sci 269:1118

    Article  Google Scholar 

  45. Michler GH (1992) Kunstoff-Mikromechanik. Carl Hanser Verlag, p 187

    Google Scholar 

  46. Magonov SN, Godovsky YuK (1999) Amer Lab 31:52

    Google Scholar 

  47. Hugel T, Strobl G, Thomann R (1999) Acta Polym 50:214

    Article  Google Scholar 

  48. Basire C, Ivanov DA (2000) Phys Rev Lett 85:5587

    Article  Google Scholar 

  49. Ivanov DA, Magonov S (2002) Atomic force microscopy studies of semicrystalline polymers at variable temperature. In: Sommer J-C, Reiter G (eds) Polymer crystallization: observations, concepts and interpretations. Springer, Berlin Heidelberg New York

    Google Scholar 

  50. Godovsky YuK, Papkov VS, Magonov SN (2001) Macromolecules 34:976

    Article  Google Scholar 

  51. Magonov SN, Cleveland J, Elings V, Denley R, Whangbo M-H (1997) Surf Sci 85:201

    Article  Google Scholar 

  52. Fasolka MJ, Mayes AM, Magonov S (2001) Ultramicroscopy 90:21

    Article  Google Scholar 

  53. Ruokolainen J, Fredrickson GH, Kramer EJ, Ryu CY, Hahn SF, Magonov SN (2002) Macromolecules 35:9391

    Article  Google Scholar 

  54. Ryu CY, Ruokolainen J, Fredrickson GH, Kramer EJ, Hahn SF, Magonov SN, in preparation

    Google Scholar 

  55. Watanabe H, Kotaka T (1983) Macromolecules 16:1783

    Article  Google Scholar 

  56. Krausch G, Dai CA, Kramer EJ, Bates FS (1993) Phys Rev Lett 71:3669

    Article  Google Scholar 

  57. Tanaka K, Yoon J-S, Takahara A, Kajiyama T (1995) Macromolecules 28:934

    Article  Google Scholar 

  58. Karim A, Slawecki TM, Kumar SK, Douglas JF, Satija SK, Han CC, Russell TP, Liu Y, Overney R, Sokolov J, Rafailovich MH (1998) Macromolecules 31:857

    Article  Google Scholar 

  59. Cabral JT, Higgins JS, McLeish TCB, Strausser S, Magonov SN (2001) Macromolecules 34:3748

    Article  Google Scholar 

  60. Cabral JT, Higgins JS, Verina NA, Magonov SN (2002) Macromolecules 35:1950

    Article  Google Scholar 

  61. Galuska AA, Poulter RR, McElrath KO (1997) Surf Interface Anal 25:418

    Article  Google Scholar 

  62. Verina NA, Magonov SN (2003) Rubber Ind Technol (in press)

    Google Scholar 

  63. Galuska AA, personal communication

    Google Scholar 

  64. Koprinarov I, Hitchcock AP, Li WH, Heng YM, Stoever HDH (2001) Macromolecules 34: 4424

    Article  Google Scholar 

  65. Hammiche A, Pollock HM, Reading M, Claybourn M, Turner PH, Jewkes K (1999) Appl Spectroscopy 53:810

    Article  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Magonov, S. (2004). Visualization of Polymer Structures with Atomic Force Microscopy. In: Applied Scanning Probe Methods. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35792-3_7

Download citation

Publish with us

Policies and ethics