Skip to main content

Sensor Technology for Scanning Probe Microscopy

  • Chapter
Applied Scanning Probe Methods

Part of the book series: NanoScience and Technology ((NANO))

  • 218 Accesses

Abstract

The invention of the scanning tunneling microscopy (STM) by Binnig and Rohrer [1–3] and the atomic force microscopy (AFM) by Binnig et al. [4] has unleashed the development of a new class of analytical tools that revolutionized surface science during the last two decades. The capability to study various surface properties on an atomic scale [5] coupled with the capability to manipulate or arrange molecular structures [6, 7] has blossomed into what recently is denoted nanoscience technology. The heart of any scanning probe microscope tool is certainly the sensing element simply termed “probe”. It consists in almost all cases of a sharpened tip with extremely small radius ofcurvature that determines the interaction volume with the local sample surface and thus the lateral resolution during the scanning process. We will concentrate in this report only on AFM-based probes, that is, cantilever probes consisting of a mechanical beam with an integrated sharp tip, because they have proven to be the most flexible arrangement for future developments in SPM. Details on the various AFM operation modes and their operation limits are not within the scope of this report and may be found elsewhere (8–11] and references therein). The same holds for the various forces involved in that process (e.g., see refs. [12–15]).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Binnig G, Rohrer H, Gerber C, Weibel E (1981) Tunneling through a controllable vacuum gap. Appl Phys Lett 40:178–180

    Article  Google Scholar 

  2. Binnig G, Rohrer H (1982) Scanning tunneling microscopy. Helv Phys Acta 55:726

    Google Scholar 

  3. Binnig G, Rohrer H, Gerber C, Weibel E (1982) Surface studies by scanning tunneling microscopy. Phys Rev Lett 49:57–61

    Article  Google Scholar 

  4. Binnig G, Quate CF, Gerber C (1986) Atomic force microscope. Phys Rev Lett 56:930–933, 1986

    Article  Google Scholar 

  5. Wiesendanger R (1994) Scanning probe microscopy and spectroscopy. Cambridge University Press

    Google Scholar 

  6. Eigler DM, Schweizer BK (1990) Positioning single atoms with a scanning tunneling microscope. Nature 344:524–526

    Article  Google Scholar 

  7. Crommie MF, Lutz CP Eigler DM (1993) Confinement of electrons to quantum corrals on a metal surface. Science 262:218–220

    Article  Google Scholar 

  8. Martin Y, Williams CC, Wickramasinghe HK (1987) Atomic force microscopy-force mapping and profiling on a sub 100-A scale 1. Appl Phys 61:4723–4729

    Article  Google Scholar 

  9. Sarid D (1991) Scanning-foree-microscopy. Oxford University Press, New York

    Google Scholar 

  10. Albrecht TR, Grutter P, Horne D, Rugar D (1991) Frequency modulation detection using high-q cantilevers for enhanced force microscope sensitivity. J Appl Phys 69:668–673

    Article  Google Scholar 

  11. Meyer B, Heinzelmann H (1995) Scanning force microscopy. In: Wiesenndanger R, Güntherodt HJ (eds) Scanning tunneling microscopy II. Springer, Berlin Heidelberg New York, pp 99–149

    Chapter  Google Scholar 

  12. Anczykowski B, Kr:uger D, Fuchs H (1996) Cantilever dynamics in quasinon-contact force microscopy: spectroscopic aspects. Phys Rev B 53:15485–15488

    Article  Google Scholar 

  13. Schwarz UD, Zwörner O, Köster P Wiesendanger R (1997) Quantitative analysis of the frictional properties of solid materials at low loads II. MICA and germanium sulfide. Phys Rev B 56:6997–7000

    Article  Google Scholar 

  14. Giessibl FJ, Bielefeldt H (2000) Physical interpretation of frequency-modulation atomic force microscopy. Phys Rev B 61:9968–9971

    Article  Google Scholar 

  15. Hölscher H, Gotsmann B, Allers W, Schwarz UD, Fuchs H, Wiesendanger R (2001) Measurement ofconservative and dissipative tip-sample interaction forces with a dynamic force microscope using the frequency modulation technique. Phys Rev B 64:075–402

    Article  Google Scholar 

  16. Schulz M, Blachnik R (1982). Landolt-Bornstein, vol 111/17a. Springer, Berlin Heidelberg New York, pp 61–83

    Google Scholar 

  17. Blakemore JS (1982) Semiconducting and other major properties of gallium arsenide. J Appl Phys 53:R123–R183

    Article  Google Scholar 

  18. von Münch (1982) Landolt-Börnstein, vol III/17a. Springer, Berlin Heidelberg New York, pp 36–42

    Google Scholar 

  19. Heuberger A (1991) Mikromechanik. Springer, Berlin Heidelberg New York

    Google Scholar 

  20. Johansson S, Ericson F, Schweitz J (1989) Influence of surface coatings on elasticity, residual stresses, and fracture properties of silicon microelements. J Appl Phys 65:122–128

    Article  Google Scholar 

  21. Lai J, Perazzo T, Shi Z, Majumdar A (1997) Optimization and performance of high-resolution micro-optomechanical thermal sensors. Sens Actuators A 58:113–119

    Article  Google Scholar 

  22. Hazel JL, Tsukruk VV (1999) Spring constants of composite ceramic/gold cantilevers for scanning probe microscopy. Thin Solid Films 339:249–257

    Article  Google Scholar 

  23. Madou M (1997) Fundamentals of microfabrication. CRC Press LLC

    Google Scholar 

  24. Oesterschulze E (2001) Advances in imaging and electron physics, vol 118, chap recent developments of probes for scanning probe microscopy. Academic Press, pp 129–206

    Google Scholar 

  25. Wolf S, Tauber RN (1986) Silicon processing for the VLSI Era, vol 1. Lattice Press, California

    Google Scholar 

  26. Katz LB (1990) VLSI Technology, chap 3. McGraw-Hill

    Google Scholar 

  27. Wolter O, Bayer T, Greschner J (1991). Micromachined silicon sensors for scanning force microscopy. J Vac Sci Technol B 9:1353–1357

    Article  Google Scholar 

  28. Ravi TS, Marcus RB (1991) Oxidation sharpening of silicon tips. J Vac Sci Technol B9:2733–2737

    Article  Google Scholar 

  29. Zhang Y, Zhang Y (1996) Formation of single tips of oxidation-sharpened Si. Appl Phys Lett 69:4260–4261

    Article  Google Scholar 

  30. Marcus RB, Ravi TS, Gmitter T, Chin K, Liu D, Orvis WJ, Ciarlo DR, Hunt CE, Trujillo J (1990) Formation of silicon tips with <1 nm radius. Appl Phys Lett 56:236–238

    Article  Google Scholar 

  31. Barth W, Debski T, Abedinov N, Ivanov T, Heerlein H, Volland B, Gotszalk T, Rangelow IW, Torkar K, Fritzenwallner F, Grabiec P, Studzinska K, Kostic I, Hudek P (2001) Evaluation and fabrication of AFM array for ESA-midas/rosetta space mission. Microelectron Eng 57–58:825–831

    Article  Google Scholar 

  32. Collins SD (1997) Etch stop techniques for micromachning. J Electrochem Soc 144:2242–2262

    Article  Google Scholar 

  33. Nakano S, Ogiso H, Yabe A (1999) Advanced micromachine fabrication using ion-implanted layers. Nuclear instruments and methods in physics research. Mater Sci Eng B 155:79–84

    Google Scholar 

  34. Yang J, Ono T, Esashi M (2000) Mechanical behaviour of ultrathin microcantilevers. Sens Actuators 82:102–107

    Article  Google Scholar 

  35. Itoh J, Tohma Y, Kanemamu S, Shimizu K (1995) Fabrication of an ultrasharp and high-aspect-ratio microprobe with a silicon-on-insulatorwafer for scanning force microscopy. J Vac Sci Technol B 13:331–334

    Article  Google Scholar 

  36. Hosaka S, Etoh K, Kikukawa A, Koyanagi H (2000) Megahertz silicon atomic force microscopy (AFM) cantilever and high-speed readout in AFM-based recording. J Vac Sci Technol B 18:94–99

    Article  Google Scholar 

  37. MaCarthy J, Pei Z, Becker M, Atteridge D (2000) FIB micromachined submicron thickness cantilevers for the study of thin film properties. Thin Solid Films 358: 146–151

    Article  Google Scholar 

  38. Albrecht TR, Akamine S, Carver TB, Quate CF (1990) Microfabrication of cantilever styli for the atomic force microscope. J Vac Sci Technol A 8:3386–3396

    Article  Google Scholar 

  39. Spindt CA, Bordie I, Humphrey L, Westerberg BR (1996) Physical properties of thin-film field emission cathodes with molybdenum cones. J Appl Phys 47:5248–5262

    Article  Google Scholar 

  40. Mihalcea C, Scholz W, Werner S, Münster S, Oesterschulze E, Kassing R (1996) Multi-purpose sensor tips for scanning near-field microscopy. Appl Phys Lett 68:3531–3533

    Article  Google Scholar 

  41. Hantschel T, Pape U, Slesazeck S, Niedermann P Vandervorst W (2000) Mounting of moulded AFM probes by soldering. Proc SPIE 4175:62–73

    Article  Google Scholar 

  42. Scholz W, Albert D, Malavé A, Werner S, Mihalcea C, Kulisch W, Oesterschulze E (1997) Fabrication of monolithic diamond probes for scanning probe microscopy applications. In: Micromachining and Imaging, SPIE vol 3009-09, pp 61–71

    Article  Google Scholar 

  43. Tortonese M, Yamada H, Barett RC, Quate CF (1991) Atomic force microscopy using a piezoresistive cantilever. IEEE 91CH2817-5:448

    Google Scholar 

  44. Minne SC, Manahis SR, Quate CF (1995) Parallel atomic force microscopy using cantilevers with integrated piezoresistive sensors and integrated piezoelectric actuators. Appl Phys Lett 67:3918–3920

    Article  Google Scholar 

  45. Jumpertz R, von den Hart A, Ohlsson O, Saumenbach S, Schelten J (1998) Piezoresistive sensors on AFM cantilevers with atomic resolution. Microelectron Eng 41/42:441–444

    Article  Google Scholar 

  46. Volodin A, van Haesendonck C (1998) Low temperature force microscopy based on piezoresistive cantilevers operating at a higher flexural mode. Appl Phys A 66:S305–S308

    Article  Google Scholar 

  47. Su Y, Brunnschweiler A, Evans AGR, Ensell G (1999) Piezomesistive silicon V-AFM cantilevers for high-speed imaging. Sens Actuators 76:139–144

    Article  Google Scholar 

  48. Brugger J, Despont M, Rossel C, Rothuizen H, Vettiger P Willemin M (1999) Microfabricated ultrasensitive piezoresistive cantilevers for torque magnetometry. Sens Actuators 73:235–242

    Article  Google Scholar 

  49. Gotszalk T, Grabiec P, Rangelow I (2000) Piezoresitive sensors for scanning probe microscopy. Ultramicroscopy 82:39–48

    Article  Google Scholar 

  50. Erlandsson R, McClelland GM, Mate CM, Chiang S (1988) Atomic force microscopy using optical interferometry. J Vac Sci Technol A 6:266

    Article  Google Scholar 

  51. Meyer G, Amer M (1988) Novel optical approach to atomic force microscopy. Appl Phys Lett 53: 1045

    Article  Google Scholar 

  52. Rugar D, Mamin HJ, Guethner P (1989) Improved fiber-optic interferometer for atomic force microscopy. Appl Phys Lett 55:2588

    Article  Google Scholar 

  53. Putman CAJ, de Grooth BG, van Hulst N, Greve J (1991)Atheoretical comparison between interferometnic and optical beam deflection technique for the measurement of cantilever displacementin AFM. Ultramicroscopy 42–44: 1509–1513

    Google Scholar 

  54. Ruf A, Abraham M, Diebel J, Ehrfeld W, Güthner P, Lacier M, Mayr K, Reinhardt J (1997) Integrated Fabry-Perot distance control for atomic force microscopy. J Vac Sci Technol B 15:579–585

    Article  Google Scholar 

  55. Göddenhenrich T, Lembe H, Hartmann U, Heiden C (1990) Force microscope with capactive displacementdetection. J Vac Sci Technol A 8:383

    Article  Google Scholar 

  56. Itoh T, Suga T (1994) Scanning force microscope using a piezoelectric microcantilever. J VacSci Technol B 12:1581–1585

    Article  Google Scholar 

  57. Giessibl FJ (2000) Atomic resolution on Si (111) (7×7) by noncontact atomic force microscopywith a force sensor based on a quartz tuning fork. Appl Phys Lett 76:1470–1472

    Article  Google Scholar 

  58. Minne SC, Yarahioglu G, Manahis SR, Adams JD, Zesch J, Atalar A, Quate CF (1998) Automated parallel high-speedatomic force microscopy. Appl Phys Lett 72(18):2340–2342

    Article  Google Scholar 

  59. Minne SC, Flueckiger P Soh HT, Quate CF (1995) Atomic force microscope lithography using amorphous silicon as a resist and advancesin parallel operation. J Vac Sci Technol B 13:1380–1385

    Article  Google Scholar 

  60. Minne SC, Manahis SR, Atalar A, Quate CF (1996) Independentparallel lithographyusing the atomic force microscope. J Vac Sci Technol B 14:2456–2461

    Article  Google Scholar 

  61. Wilder K, Soh HT, Minne SC, Manahis SR, Quate CF (1997) Cantileverarrays for lithography. NavalRes Rev XXIX:35–48

    Google Scholar 

  62. Chui BW, Stowe TD, Kenny TW, Mamin HJ, Terris BD, Rugar D (1996) Low-stiffness silicon cantileversfor thermal writing and piezo-resistive feadback with the atomic force microscope. Appl Phys Lett 69:2767

    Article  Google Scholar 

  63. Vettiger P Despont M, Drechsler U, During U, Häberle W, Lutwyche MI, Rothuizen HB, Stutz R, Widmer R, Binning GK (2000) The millipede — more than one thousand tips for future AFM data storage. IBM J Res Develop 44:323–340

    Article  Google Scholar 

  64. Despont M, Brugger J, Drechsler U, During U, Häberle W, Lutwyche M, Rothuizen H, Stutz R, Widmer R, Binning G, Rohrer H, Vettiger P (2000) VLSI-NEMS chip for parallel AFM data storage. Sens Actuators 80:100–107

    Article  Google Scholar 

  65. Garcia N, Levanyuk AP, Minyukov SA, Binh TV (1995) Estimationsfor the characteristics of GHz range nanocantilevers: eigenfrequencies and quality factors. Surface Sci 328:337–342

    Article  Google Scholar 

  66. Walters DA, Cleveland JP, Thomson NH, Hansma PK, Wendmann MA, Gurley G, Elings V (1996) Short cantileversfor atomic force microscopy. Rev Sci Instr 67:3583–3590

    Article  Google Scholar 

  67. Stowe TD, Yasumura K, Kenny TW (1997) Attonewtonforce detectionusing ultrathin silicon cantilevers. Appl Phys Lett 71:288–290

    Article  Google Scholar 

  68. Wago O, Zuger K, Wegener R, Kendrick R, Yannoni CS, Rugain D (1997) Magnetic resonanceforce detectionand spectroscopy of electronspinsin phosphorous-doped silicon. Rev Sci Instr 68:1823–1826

    Article  Google Scholar 

  69. Paloczi GT, Smith BL, Hansma PK, Walters DA (1998) Rapid imaging of calcite crystal growthusing atomicforcemicroscopy with smallcantilevers. Appl Phys Lett 73:1658–1660

    Article  Google Scholar 

  70. Kawakatsu H, Toshiyoshi H, Saya D, Fukushima K, Fujita H (2000) Strength measurement and calculations on silicon-based nanometric oscillators for scanning force microscopy operating in the gigahertz range. Appl Surf Sci 157:320–325

    Article  Google Scholar 

  71. Saya D, Fukushima K, Toshiyoshi H, Fujita H, Hashiguchi G, Kawakatsu H (2000) Fabrication of silicon-based filiform-necked nanometmic oscillator. Jpn J Appl Phys 39:3793–3798

    Article  Google Scholar 

  72. Bergen R, Lang HP, Gerber C, Gimzewski JK, Fabian JH, Scandella L, Meyer B, Guntherodt HJ (1998) Micromechanical thermogravimetry. ChernPhys Lett 294:363–369

    Google Scholar 

  73. Lang HP, Berger R, Battiston FM, Ramseyer JP, Meyer C, Andreolli B, Brugger J, Vettiger P, Despont M, Mezzacasa T, Scandehla L, Güntherodt HJ, Gerber C, Gimzewski JK (1998) Achemicalsensorbasedon a micromechanical cantilever for the identification of gasesand vapors. Appl Phys A 66:S61–S64

    Article  Google Scholar 

  74. Bachels T, Schäfer R (1999) Formation enthalpies of Sn clusters: a calorimetric investigation. Chern Phys Lett 300:177–182

    Article  Google Scholar 

  75. lung MY, Kim DW, Choi SS, Kang Cl, Kuk Y (1999) Characterization of bimetallic cantilever for chemical sensor applications. Jpn J Appl Phys 38:6555–6557

    Article  Google Scholar 

  76. Lang HP, Baller MK, Bergen R, Gerber C, Gimzewski JK, Battiston FM, Fornaro P, Ramseyer JP, Meyer B, Guntherodt HJ (1999) An artificial nose based on a micromechanical cantilever array. Anal Chim Acta 393:59–65

    Article  Google Scholar 

  77. Baller MK, Lang HP, Fritz J, Gerber C, Gimzewski JK, Drechslem U, Rothuizen H, Despont M, Vettiger P, Battiston FM, Ramseyer JP, Fornaro P, Meyer B, Gunthemodt HJ (2000) A cantilever array-based artificial nose. Ultramicroscopy 82: 1–9

    Article  Google Scholar 

  78. Boisen A, Thaysen J, lensenius H, Hansen O (2000) Environmental sensors based on micromachined cantilevers with integrated mead-out. Ultramicroscopy 82: 11–16

    Article  Google Scholar 

  79. Barnes JR, Stephenson RJ, WeIland MB, Gerber C, Gimzewski JK (1994) Photothermal spectroscopy with femtojoule sensitivity using a micromechanical device. Nature 372:79–81

    Article  Google Scholar 

  80. Berger R, Delamarche B, Lang HP, Gerber C, Gimzewski JK, Meyer B, Guntherodt HJ (1997) Surface stress in the self-assembly of alkanethiols on gold. Nature 276:2021–2024

    Google Scholar 

  81. Akama Y, Nishimura B, Sakai A (1990) New scanning tunneling microscopy tip for measuring surface topography. J Vac Sci Technol A 8:429–433

    Article  Google Scholar 

  82. Broers AN, Molzen WW, Cuomo JJ, Wittels ND (1996) Electron beam fabrication of 80A metal structures. Appl Phys Lett 29:596–598

    Article  Google Scholar 

  83. Okayama S, Komuro M, Mitzutani W, Tokumoto H, Okano M, Shimizu K, Kobayashi Y, Matsumoto F, Wakiyama S, Shigeno M, Sakai F, Fujiwara S, Kitamura O, Quo M, Kajimura K (1988) Observation of microfabricated patterns by scanning tunneling microscopy. J Vac Sci Technol A 6:440–444

    Article  Google Scholar 

  84. Ichihashi T, Matsui S (1988) In situ observation of electron beam induced chemical vapor deposition by transmission electron microscopy. J Vac Sci Technol B 6: 1869–1872

    Article  Google Scholar 

  85. Dai H, Hafner JH, Rinzler AG, Colbert DT, Smalley RB (1996) Nanotubes as nanoprobes in scanning probe microscopy. Nature 384:147–150

    Article  Google Scholar 

  86. Iiiji S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  Google Scholar 

  87. Dresselhaus MS, Dresselhaus G, Eklund PC (1996) Science offullerenes and carbon nanotubes. Academic Press

    Google Scholar 

  88. Harris TD, Gershoni D, Grober RD, Pfeiffer L, West P, Chand N (1996) Near-field optical spectroscopy of single quantum wire. Appl Phys Lett 68:988–990

    Article  Google Scholar 

  89. Nagy G, Scarmozzino R, Osgood H, Dai RM, Smalley RB, Michaels CA, Flynn GW, McLane GF (1998) Carbon nanotube tipped atomic force microscopy for measurement of <100 nm etch morphology on semiconductors. Appl Phys Lett 73:529–531

    Article  Google Scholar 

  90. Wong SS, Woolley AT, Odon TW, Huang lL, Kim P, Vezenov DV, Lieber CM (1998) Single-walled carbon nanotube probes for high-resolution nanostructure imaging. Appl Phys Lett 73:3465–3467

    Article  Google Scholar 

  91. Dai H, Franklin N, Han J (1998) Exploiting the properties of carbon nanotubes for nanolithography. Appl Phys Lett 73:1508–1510

    Article  Google Scholar 

  92. Teacy MM, Ebbesen TW, Gibson JM (1996) Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 381:678–680

    Article  Google Scholar 

  93. Wong BW, Sheehan PB, Lieber CM (1992) Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science 277: 1971–1975

    Article  Google Scholar 

  94. Salvetat JP, Briggs AD, Bonard JM, Basca RR, Kuhik AJ, Stockhi T, Burnham NA, Forro L (1999) Elastic and shear moduli of single-walled carbon nanotube ropes. Phys Rev Lett 82:944–947

    Article  Google Scholar 

  95. Falvo MR, Chary GJ, Taylor RM, Chin V, Brooks FP, Washburn S, Superfine R (1997) Bending and buckling of carbon nanotubes under large strain. Nature 389:582–584

    Article  Google Scholar 

  96. Nardehhi MB, Yakobsen BI, Bernhole J (1998) Brittle and ductile behavior in carbon nanotubes. Phys Rev Lett 81:4656–4659

    Article  Google Scholar 

  97. Falvo MR, Chary GJ, Paulson S, Taylor RM, Chin Y, Brooks FP Washburn S, Superfine R (1999) Nanomanipulation experiments exploring frictional and mechanical properties of carbon nanotubes. Micros MicroanaI 4:504–512

    Article  Google Scholar 

  98. Ru CQ (2000) Effective bending stiffness of carbon nanotubes. Phys Rev B 62:9973–9976

    Article  Google Scholar 

  99. Wong SS, Joselevich B, Woolley AT, Cheung CC, Lieber CM (1998) Covalently functionalized nanotubes as nanometre-sized probes in chemistry and biology. Nature 394:52–55

    Article  Google Scholar 

  100. Terrones M, Hsu WK, Schilder A, Terrones H, Grobert N, Hare JP, Zhu YQ, Schwoerer M, Prassides K, Kroto HW, Walton DRM (1998) Novel nanotubes and encapsulated nanowires. Appl Phys A 66:307–317

    Article  Google Scholar 

  101. Nishijima H, Kamo S, Akita S, Nakayama Y, Hohmura KI, Yoshimura SH, Takeyasu K (1999) Carbon-nanotube tips for scanning probe microscopy: preparation by a controlled process and observation of deoxyribonucleic acid. Appl Phys Lett 74:4061–4063

    Article  Google Scholar 

  102. Akita S, Nishijima H, Nakayama Y, Tokumasu F, Takeyasu K (1999) Carbon nanotube tips for a scanning probe microscope: their fabrication and properties. J Phys D Appl Phys 32:1044–1048

    Article  Google Scholar 

  103. Barwich V, Bammerhin M, Baratoff A, Bennewitz R, Guggisberg M, Loppacher C, Pfeiffer O, Meyer B, Gunthemodt HJ, Salvetat JP, Bonard JM, Forro L (2000) Carbon nanotubes as tips in non-contact SFM. Appl Surf Sci 157:269–273

    Article  Google Scholar 

  104. Kulisch W (1999) Deposition of diamond-like superhard materials, vol 157. Tracts in modern physics. Springer, Berlin Heidelberg New York

    Google Scholar 

  105. Kulisch W, Malavé A, Lippold G, Scholz W, Mihalcea C, Oesterschulze E (1997) Fabrication of integrated diamond cantilevers with tips for SPM applications. Diamond Relat Mater 6:906

    Article  Google Scholar 

  106. Malavé A, Oesterschulze E, Kulisch W, Trenkler T, Hantschel T, Vandervorst W (1999) Diamond tips and cantilevers for the characterization of semiconductor devices. Diamond Relat Mater 8:283–287

    Article  Google Scholar 

  107. Hantschel T, Trenkler T, Vandervorst W, Malavé A, Büchel D, Kulisch W, Oesterschulze E (1999) Tip-on-tip: a novel AFM tip configuration for the electrical characterization of semiconductor devices. Microelectr Eng 46: 113–116

    Article  Google Scholar 

  108. Binning G, Rohrer H (1996) Scanning tunneling microscopy. IBM J Res Develop 30:355

    Google Scholar 

  109. Martin O, Drake B, Hansma PK (1987) Atomic force microscopy of liquid-covered surfaces: atomic resolution images. Appl Phys Lett 51:484–486

    Article  Google Scholar 

  110. Visser BP, Gerritsen JW, Van Enckevort WJP, Van Kempen H (1992) Tip for scanning tunneling microscopy made of monocrystaline, semiconducting, chemical vapour deposited diamond. Appl Phys Lett 60:3232–3234

    Article  Google Scholar 

  111. Kang WP, Davidson JL, Howell M, Bhuva B, Kinser DL, Kerns DV (1996) Micropatterned polycrystalline diamond field emitter vacuum diode arrays. J Vac Sci Technol B 14:2068–2071

    Article  Google Scholar 

  112. Germann GJ, McClelland GM, Mitsuda Y, Buck M, Seki H (1990) Diamond force microscope tips by chemical vapor deposition. Rev Sci Inst 63:4053–4055

    Article  Google Scholar 

  113. Liu N, Ma Z, Chu X, Hu T, Xue Z, Jiang X, Pang S (1994) Fabrication of diamond tips by the microwave plasma chemical vapour deposition. J Vac Sci Technol B 12:1712–1715

    Article  Google Scholar 

  114. Niedermann P, Hänni W, Blanc N, Christoph R, Burger J (1996) Chemical vapour deposition diamond for tips in nanoprobe experiments. J Vac Sci Technol A 14:1233–1236

    Article  Google Scholar 

  115. Oesterschulze E, Scholz W, Mihalcea C, Albert D, Sobisch B, Kulisch W (1997) Fabrication of small diamond tips for scanning probe microscopy application. Appl Phys Lett 70:435–437

    Article  Google Scholar 

  116. Niedermann P, Hänni W, Morel D, Perret A, Skinner N, Indermühle PF, de Rooij NF, Buffat PA (1998) CVD diamond probes for nanotechnology. Appl Phys A 66:S31–S34

    Article  Google Scholar 

  117. Mihalcea C, Scholz W, Malavë A, Albert D, Kulisch W, Oesterschulze E (1998) Fabrication of monolithic diamond probes for scanning probe microscopy applications. Appl Phys A 66:S87–S90

    Article  Google Scholar 

  118. Trenkler T, Hantschel T, Stephenson R, De Wolf P, Vandervorst W, Hellemans L, Malavé A, Büchel D, Oesterschulze E, Kulisch W, Niedermann P, Sulzbach T, Ohlsson O (2000) Evaluating probes for ‘electrical’ atomic force microscopy. J Vac Sci Technol B 18:418–427

    Article  Google Scholar 

  119. Beuret C, Akiyama T, Staufer U, de Rooij NF, Niedermann P, Hanni W (1998) Conical diamond tips realized by a double-molding process for high-resolution profilometry and atomic force microscopy applications. Appl Phys Lett 76: 1621–1623

    Article  Google Scholar 

  120. Malavé A, Ludolph K, Leinhos T, Lehrer C, Frey L, Oesterschulze E (2001) All-diamond probes for scanning probe microscopy applications realized by a proximity lithography process. Appl Phys A (in press)

    Google Scholar 

  121. Oesterschulze E, Malavé A, Keyser UF, Haug RJ (2001) Diamond cantilevers with integrated tip for nanomachining. Diamond Relat Mater (in press)

    Google Scholar 

  122. Yuan G, Jin Y, Jin C, Zhang B, Song H, Ning Y, Zhou T, Jiang H, Li S, Tian Y, Gu C (1998) Growth of diamond on silicon tips. J Crystal Growth 186:382–385

    Article  Google Scholar 

  123. Howes MJ, Morgan DV (eds) Gallium arsenide — materials, devices, and circuits. Wiley

    Google Scholar 

  124. Prins MWJ, Groenveld RHM, Abraham DL, Van Kempen H (1995) Near-field magnetooptical imaging in scanning tunneling microscopy. Appl Phys Lett 66: 1141–1143

    Article  Google Scholar 

  125. Heisig S, Oesterschulze E (1998) Gallium arsenide probes for scanning near-field probe microscopy. Appl Phys A 66:385–390

    Article  Google Scholar 

  126. Prins MWJ, van den Wielen MCMM, R. Jansen, Abraham DL, Van Kempen H (1994) Photoamperic probes in scanning tunneling microscopy. Appl Phys Lett 64:1207–1209

    Article  Google Scholar 

  127. Heisig S, Rudow O, Oesterschulze E (2000) Optical active gallium arsenide cantilever probes for combined scanning near-field optical microscopy and scanning force microscopy. J Vac Sci Technol B 18:1134–1137

    Article  Google Scholar 

  128. Heisig S, Rudow O, Oesterschulze E (2000) Scanning near-field optical microscopy in the near-infrared using light emitting cantilever probes. Appl Phys Lett 77:1071–1073

    Article  Google Scholar 

  129. Goodman JW (1989) Introduction to Fourier optics. McGraw-Hill

    Google Scholar 

  130. Hecht B Optik, 3rd edn. Addison-Wesley

    Google Scholar 

  131. Fischer UC (1998) Scanning near-field optical microscopy. In: Wiesendanger R (ed) Scanning probe microscopy. Springer, Berlin Heidelberg New York, pp 161–209

    Chapter  Google Scholar 

  132. Novotny L (1996) Light propagation and light confinement in near-field optics. PhD thesis, Swiss Federal Institute of Technology, Zurich

    Google Scholar 

  133. Fillard JP (1996) Near field optics and nanoscopy. World Scientific

    Google Scholar 

  134. Paesler MA, Moyer PJ (1996) Near-field optics — theory, instrumentation, and applications. Wiley

    Google Scholar 

  135. Ohtsu M (1998) Near-field nano/atom optics and technology. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  136. Vollkopf A, Rudow O, Oesterschulze E (2001) Technology to reduce the aperture size of microfabricated aperture SNOM tips. J Electrochem Soc 148:G587–G591

    Article  Google Scholar 

  137. Ruiter AG, Moers MHP, van Hulst NF, de Boer M (1996) Microfabrication of near-field optical probes. J Vac Sci Technol B 14:597–601

    Article  Google Scholar 

  138. Ruiter AGT, Moers MHP, Jalocha A, van Hulst NF (1995) Development of an integrated NSOM probe. Ultramicroscopy 61:139–143

    Article  Google Scholar 

  139. Mihalcea C, Vollkopf A, Oesterschulze E (2000) Reproducible large area microfabrication of sub 100 nm apertures on hollow tips. J Electrochem Soc 147:1970

    Article  Google Scholar 

  140. Deal BB, Grove AS (1965) General relationship for the thermal oxidation of silicon. J Appl Phys 36:3770–3778

    Article  Google Scholar 

  141. EerNisse BP (1979) Stress in thermal SiO2 during growth. Appl Phys Lett 35:810

    Article  Google Scholar 

  142. Wilson LO, Marcus RB (1987) Oxidation of curved silicon surfaces. J Electrochem Soc 134:481–491

    Article  Google Scholar 

  143. Kobeda B, Irene BA (1988) SiO2 film stress distribution during thermal oxidation of Si. J Vac Sci Technol B 6:574–578

    Article  Google Scholar 

  144. Kao DH, McVittie JP, Nix WD, Krishna CS (1987) Two-dimensional thermal oxidation of silicon — I. Experiments. IEEE Trans Electron Dev BD-34: 1008–1017

    Article  Google Scholar 

  145. Kao DH, McVittie JP, Nix WD, Krishna CS (1988) Two-dimensional thermal oxidation of silicon-Il. Modeling stress effects in wet oxides. IEEE Trans Electron Dev BD-35:25–37

    Article  Google Scholar 

  146. Law ME, Tasch A (1998) FLOOPS; Florida object oriented processing simulator. University of Florida and University of Texas, at Austin, http://www.swamp.tec.ufl.edu

    Google Scholar 

  147. Senez P, Collard D, Baccus B (1994) Analysis and application of a viscoelastic model for silicon oxidation. J Appl Phys 76:3285–3296

    Article  Google Scholar 

  148. Hu SM (1998) Effect ofprocess parameters on stress development in two-dimensional oxidation. J Appl Phys 64:323–330

    Article  Google Scholar 

  149. Rafferty CS, Borucki L, Dutton RW (1989) Plastic flow during thermal oxidation of silicon. Appl Phys Lett 54:1516–1518

    Article  Google Scholar 

  150. Lee MB, Kourogi M, Yatsui T, Tsutsuin T, Atoda N, Ohtsu M (1999) Silicon planar-apertured probe array for high-density near-field optical data storage. Appl Opt 38:3566–3571

    Article  Google Scholar 

  151. Lee MB, Atoda N, Tsutsui K, Ohtsu M (1999) Nanometric aperture arrays fabricated by wet and dry etching of silicon for near-field optical storage application. J Vac Sci Technol B 17:2462–2466

    Article  Google Scholar 

  152. Kim YJ, Kurihara K, K. Suzuki, Nomura M, Mitsugi S, Chiba M, Goto K (2000) Fabrication of micro-pyramidal probe array with aperture for near field optical memory applications. Jpn J Appl Phys 39:L1538–L1541

    Article  Google Scholar 

  153. Grober RD, Schoelkopf RJ, Prober DB (1997) Optical antenna: towards a unity efficiency near-field optical probe. Appl Phys Lett 70:1354–1356

    Article  Google Scholar 

  154. Keilmann F (1991) Scanning tip for optical radiation. US patent 4,994,818

    Google Scholar 

  155. Fischer UC, Zapletal M (1992) The concept of a coaxial tip as a probe for scanning near field optical microscopy and steps towards a realisation. Ultramicroscopy 42–44:393–398

    Article  Google Scholar 

  156. Leinhos T, Rudow O, Stopka M, Vollkopf A, Oesterschulze E (1999) Coaxial probes for scanning near-field microscopy. J Microsc 194:349–352

    Article  Google Scholar 

  157. Grober RD, Schoelkopf RJ, Prober DB (1997) High efficiency near-field electromagnetic probe having a bowtie antenna structure. US patent 5,696,372

    Google Scholar 

  158. Oesterschulze E, Georgiev G, Vollkopf A, Rudow O (2001) Transmission line probe on base of a bow-tie antenna. J Microscopy 202:39–44

    Article  Google Scholar 

  159. Rudow O, Vollkopf A, Müller-Wiegand M, Georgiev G, Oesterschulze E (2001) Theoretical investigations of a coaxial probe concept for scanning near-field optical microscopy. Opt Commun 189:187–192

    Article  Google Scholar 

  160. Diaz AF, Logan JA (1980) Electroactive polyaniline films. J Electroanal Chern 111:111–114

    Article  Google Scholar 

  161. Wei Y, Tang X, Su Yn (1989) Autoacceleration and kinetics of electrochemical polymerization of polyaniline. J Phys Chern 93:4878–4881

    Article  Google Scholar 

  162. Duic L, Mandie Z (1992) Counter-ion and pH effect on the electrochemical synthesis of polyaniline. J Electroanal Chern 335:207–221

    Article  Google Scholar 

  163. Chiang JC, MacDiarmid AG (1986) Polyanilin: protonic doping of the emeraldine form to the metallic regime. Synth Metals 13:193–205

    Article  Google Scholar 

  164. Talaie A (1997) Conducting polymer based pH detector: a new outlook to pH sensing technology. Polymer 38:1145–1150

    Article  Google Scholar 

  165. Talaie A, Lee JY, Lee YK, Jang J, Romagnoli JA, Taguchi T, Maeder B (2000) Dynamic sensing using intelligent composite: an investigation to development ofnew pH sensors and electrochromic devices. Thin Solid Films 363: 163–166

    Article  Google Scholar 

  166. Pringsheim B, Terpetschnig B, Wolfbeis OS (1997) Optical sensing ofpH using thin films of substituded polyanilines. Anal Chim Acta 357:247–252

    Article  Google Scholar 

  167. Grummt UW, Pron A, Zagorska M, Lefrant S (1997) Polyaniline based optical pH sensor. Anal Chim Acta 357:253–259

    Article  Google Scholar 

  168. Ge Z, Brown CW, Sun L, Yang SC (1993) Fiberoptic pH sensor based on evanescent-wave absorption-spectroscopy. Anal Chern 65:2335–2338

    Article  Google Scholar 

  169. Jin Z, Su Y, Duan Y (2000) An improved optical pH sensor based on polyaniline. Sens Actuators B 71:118–122

    Article  Google Scholar 

  170. Shinada S, Koyama F, Nishiyama N, Arai M, Goto K, Iga K (1999) Fabrication of microapertur surface emitting laser for near field optical data storage. Jpn J Appl Phys 38:L1327–L1329

    Article  Google Scholar 

  171. Weiss S, Ogletree DF, Botkin D, Salmeron M, Chemala DS (1993) Ultrafast scanning probe microscopy. Appl Phys Lett 63:2567

    Article  Google Scholar 

  172. Botkin DA (1995) Ultrafast tunneling microscopy. PhD thesis, UC Berkeley

    Google Scholar 

  173. Ketchen MB, Grischkowsky D, Chen CC, Chi CC, Duling IN, Halas NJ, Halbout JM, Kash JA, Li GP (1986) Generation of subpicosecond electrical pulses on coplanar transmission lines. Appl Phys Lett 48:751–753

    Article  Google Scholar 

  174. Heiliger HM, Pfeiffer T, Roskos HG, Kurz H (1996) External photoconductive switches as generators and detectors of picosecond electric transients. Microelectron Eng 31:415–426

    Article  Google Scholar 

  175. Jensen RJ, Keil UD, Hvam JH (1997) Spatio-temporal imaging of voltage pulses with an ultrafast scanning tunneling microscope. Appl Phys Lett 70:2762–2764

    Article  Google Scholar 

  176. Auston DH (1975) Picosecond optoelectronic switching and gatinng in silicon. Appl Phys Lett 26:101–103

    Article  Google Scholar 

  177. Kroekel D, Grischkowsky D, Ketchen MB (1989) Subpicosecond electrical pulse generation using photoconductinve switches with long carrier lifetimes. Appl Phys Lett 54:10461047

    Google Scholar 

  178. Kim J, Williamson S, Nees J, Wakana SI, Whitaker J (1993) Photoconductive sampling probe with 2.3 ps temporal resolution and 4 μ V sensitivity. Appl Phys Lett 62:2268–2270

    Article  Google Scholar 

  179. Steffens WM, Heisig S, Keil U, Oesterschulze E (1999) Spatio-temporal imaging of voltage pulses with a laser gated photoconductive sampling probe. Appl Phys B 69:455–458

    Article  Google Scholar 

  180. Keil UD, Jensen JR, Hvam JM (1998) Transient measurements with an ultrafast scanning tunneling microscope. Appl Phys A 66:S23–S26

    Article  Google Scholar 

  181. Steffens WM, Oesterschulze E (1999) Atomic force microscope cantilever for voltage probe with ultrafast the resolution. Electron Lett 35: 1106–1108

    Article  Google Scholar 

  182. Oesterschulze E, Steffens WM (2001) Cantilever probes for spatio-temporal imaging of voltage pulses with an ultrafast scanning probe microscope. J Vac Sci Technol B 19:107–110

    Article  Google Scholar 

  183. Keil UD, Jensen JR, Hvam JM (1997) Fiber coupled ultrafast tunneling microscope. J Appl Phys 81:2929–2934

    Article  Google Scholar 

  184. Steffens W (1999) Detektion von ultrakurzen elektrischen Signalen mit hoher Ortsauflosung. PhD thesis, Universität Gesamthochschule Kassel

    Google Scholar 

  185. Gupta S, Frankel MY, Valdmanis JA, Whitaker GA, Mourou JF (1991) Subpicosecond carrier lifetime in GaAs grown by molecular beam epitaxy at low temperatues. Appl Phys Lett 59:3276–3278

    Article  Google Scholar 

  186. Harmon BS, Melloch MR, Woodall JM, Nolte DD, Otsuka N, Chang CL (1991) Carrier lifetime versus anneal in low temperature grown GaAs. Appl Phys Lett 63:2248–2250

    Article  Google Scholar 

  187. Smith FW (1992) Device applications of low-temperature-grown GaAs. In: Witt GL, Calawa AR, Mishra UK, Weber ER (eds) Low temperature (LT) GaAs and related materials. Material Res Soc, pp 3–11

    Google Scholar 

  188. Liu X, Prasad A, Chen WM, Kurpiewski A, Stoschek, Liliental-Weber Z, Weber BR (1994) Mechanism responsible for the semi-insulating properties of low-temperature-grown GaAs. Appl Phys Lett 59:3276–3278

    Google Scholar 

  189. Keil UD, Jensen JR, Hvam JM (1998) Transient measurements with an ultrafast scanning tunneling microscope on semiconductor surfaces. Appl Phys Lett 72: 1644–1646

    Article  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Oesterschulze, E., Kassing, R. (2004). Sensor Technology for Scanning Probe Microscopy. In: Applied Scanning Probe Methods. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35792-3_4

Download citation

Publish with us

Policies and ethics