Advertisement

Widening Spectrum of Prions Causing Neurodegenerative Diseases

  • Stanley B. PrusinerEmail author
Chapter
Part of the Research and Perspectives in Alzheimer's Disease book series (ALZHEIMER)

Abstract

The field of prion biology still seems to be in its infancy. Over the past three decades, there has been a steady accumulation of evidence that each neurodegenerative disease is caused by a particular protein that becomes a prion. As with the prion diseases caused by the aberrant prion protein (PrPSc), amyloid deposits in other neurodegenerative disorders were found to have the same protein as that identified by molecular genetic studies of patients with inherited neurodegeneration. While the number of prions identified in mammals (now at more than half a dozen) and in fungi (now more than ten) will undoubtedly continue to expand, we have no idea about prions in all the other phylogeny. The mammalian prions composed of PrP, Aβ, tau, α-synuclein, SOD1 and huntingtin all cause distinct neurodegenerative diseases. In each of these disorders, the respective mammalian proteins adopt a β-sheet–rich conformation that readily oligomerizes and becomes self-propagating. The oligomeric states of mammalian prions are thought to be the toxic forms, and assembly into larger polymers such as amyloid fibrils seems to be a mechanism for minimizing toxicity. To date, there is not a single medication that halts or even slows a neurodegenerative disease caused by prions. This may be a bellwether of the unique pathogenic mechanisms that feature in each of the prion diseases and of the urgent need to develop informative molecular diagnostics and effective antiprion therapeutics.

Keywords

Amyotrophic Lateral Sclerosis Amyloid Precursor Protein Progressive Supranuclear Palsy Prion Disease Amyloid Fibril 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Alper T, Haig DA, Clarke MC (1966) The exceptionally small size of the scrapie agent. Biochem Biophys Res Commun 22:278–284PubMedCrossRefGoogle Scholar
  2. Alzheimer A (1907) Ueber eine eigenartige erkrankung der hirnrinde. Cent Nervenheilk Psychiat 30:177–179Google Scholar
  3. Baker HF, Ridley RM, Duchen LW, Crow TJ, Bruton CJ (1994) Induction of β(a4)-amyloid in primates by injection of Alzheimer’s disease brain homogenate. Mol Neurobiol 8:25–39PubMedCrossRefGoogle Scholar
  4. Bellinger-Kawahara CG, Kempner E, Groth DF, Gabizon R, Prusiner SB (1988) Scrapie prion liposomes and rods exhibit target sizes of 55,000 Da. Virology 164:537–541PubMedCrossRefGoogle Scholar
  5. Bithell A, Johnson R, Buckley NJ (2009) Transcriptional dysregulation of coding and non-coding genes in cellular models of Huntington’s disease. Biochem Soc Trans 37:1270–1275PubMedCrossRefGoogle Scholar
  6. Bolton DC, McKinley MP, Prusiner SB (1982) Identification of a protein that purifies with the scrapie prion. Science 218:1309–1311PubMedCrossRefGoogle Scholar
  7. Braak H, Braak E (1995) Staging of Alzheimer’s disease-related neurofibrillary changes. Neurobiol Aging 16:271–284PubMedCrossRefGoogle Scholar
  8. Braak H, Del Tredici K (2011) Alzheimer’s pathogenesis: is there neuron-to-neuron propagation? Acta Neuropathol 121:589–595PubMedCrossRefGoogle Scholar
  9. Braak H, Braak E, Yilmazer D, de Vos RA, Jansen EN, Bohl J (1996) Pattern of brain destruction in Parkinson’s and Alzheimer’s diseases. J Neural Transm 103:455–490PubMedCrossRefGoogle Scholar
  10. Braak H, Rub U, Gai WP, Del Tredici K (2003) Idiopathic Parkinson’s disease: possible routes by which vulnerable neuronal types may be subject to neuroinvasion by an unknown pathogen. J Neural Transm 110:517–536PubMedCrossRefGoogle Scholar
  11. Brion J-P, Passareiro H, Nunez J, Flament-Durand J (1985) Mise en évidence immunologique de la protéine tau au niveau des lésions de dégénérescence neurofibrillaire de la maladie d’Alzheimer. Arch Biol 95:229–235Google Scholar
  12. Castellano JM, Kim J, Stewart FR, Jiang H, DeMattos RB, Patterson BW, Fagan AM, Morris JC, Mawuenyega KG, Cruchaga C, Goate AM, Bales KR, Paul SM, Bateman RJ, Holtzman DM (2011) Human apoE isoforms differentially regulate brain amyloid-beta peptide clearance. Sci Transl Med 3:89ra57PubMedCrossRefGoogle Scholar
  13. Chen Y-C, Prescott CA, Walsh D, Patterson DG, Riley BP, Kendler KS, Kuo PH (2011) Different phenotypic and genotypic presentations in alcohol dependence: age at onset matters. J Stud Alcohol Drugs 72:752–762PubMedGoogle Scholar
  14. Chien P, Weissman JS, DePace AH (2004) Emerging principles of conformation-based prion inheritance. Annu Rev Biochem 73:617–656PubMedCrossRefGoogle Scholar
  15. Clavaguera F, Bolmont T, Crowther RA, Abramowski D, Frank S, Probst A, Fraser G, Stalder AK, Beibel M, Staufenbiel M, Jucker M, Goedert M, Tolnay M (2009) Transmission and spreading of tauopathy in transgenic mouse brain. Nat Cell Biol 11:909–913PubMedCrossRefGoogle Scholar
  16. Corsellis JA, Bruton CJ, Freeman-Browne D (1973) The aftermath of boxing. Psychol Med 3:270–303PubMedCrossRefGoogle Scholar
  17. Corti O, Lesage S, Brice A (2011) What genetics tells us about the causes and mechanisms of Parkinson’s disease. Physiol Rev 91:1161–1218PubMedCrossRefGoogle Scholar
  18. Coskun PE, Wyrembak J, Derbereva O, Melkonian G, Doran E, Lott IT, Head E, Cotman CW, Wallace DC (2010) Systemic mitochondrial dysfunction and the etiology of Alzheimer’s disease and Down syndrome dementia. J Alzheimers Dis 20(Suppl 2):S293–S310PubMedGoogle Scholar
  19. Croes EA, Theuns J, Houwing-Duistermaat JJ, Dermaut B, Sleegers K, Roks G, Van den Broeck M, van Harten B, van Swieten JC, Cruts M, Van Broeckhoven C, van Duijn CM (2004) Octapeptide repeat insertions in the prion protein gene and early onset dementia. J Neurol Neurosurg Psychiatry 75:1166–1170PubMedCrossRefGoogle Scholar
  20. de Calignon A, Polydoro M, Suarez-Calvet M, William C, Adamowicz DH, Kopeikina KJ, Pitstick R, Sahara N, Ashe KH, Carlson GA, Spires-Jones TL, Hyman BT (2012) Propagation of tau pathology in a model of early Alzheimer’s disease. Neuron 73:685–697PubMedCrossRefGoogle Scholar
  21. DeJesus-Hernandez M, Mackenzie IR, Boeve BF, Boxer AL, Baker M, Rutherford NJ, Nicholson AM, Finch NA, Flynn H, Adamson J, Kouri N, Wojtas A, Sengdy P, Hsiung GY, Karydas A, Seeley WW, Josephs KA, Coppola G, Geschwind DH, Wszolek ZK, Feldman H, Knopman DS, Petersen RC, Miller BL, Dickson DW, Boylan KB, Graff-Radford NR, Rademakers R (2011) Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72:245–256PubMedCrossRefGoogle Scholar
  22. Deutschbauer AM, Jaramillo DF, Proctor M, Kumm J, Hillenmeyer ME, Davis RW, Nislow C, Giaever G (2005) Mechanisms of haploinsufficiency revealed by genome-wide profiling in yeast. Genetics 169:1915–1925PubMedCrossRefGoogle Scholar
  23. Divry P (1927) Etude histochimique des plaques seniles. J Belge Neurol Psychiat 27:643–654Google Scholar
  24. Dobson CM (2003) Protein folding and misfolding. Nature 426:884–890PubMedCrossRefGoogle Scholar
  25. Eisele YS, Bolmont T, Heikenwalder M, Langer F, Jacobson LH, Yan ZX, Roth K, Aguzzi A, Staufenbiel M, Walker LC, Jucker M (2009) Induction of cerebral β-amyloidosis: intracerebral versus systemic Aβ inoculation. Proc Natl Acad Sci USA 106:12926–12931PubMedCrossRefGoogle Scholar
  26. Eisenberg D, Jucker M (2012) The amyloid state of proteins in human diseases. Cell 148:1188–1203PubMedCrossRefGoogle Scholar
  27. Frost B, Jacks RL, Diamond MI (2009) Propagation of tau misfolding from the outside to the inside of a cell. J Biol Chem 284:12845–12852PubMedCrossRefGoogle Scholar
  28. Gajdusek DC (1977) Unconventional viruses and the origin and disappearance of kuru. Science 197:943–960PubMedCrossRefGoogle Scholar
  29. Games D, Adams D, Alessandrini R, Barbour R, Berthelette P, Blackwell C, Carr T, Clemens J, Donaldson T, Gillespie F, Guido T, Hagopian S, Johnson-Wood K, Khan K, Lee M, Leibowitz P, Lieberburg I, Little S, Masliah E, McConlogue L, Montoya-Zavala M, Mucke L, Paganini L, Penniman E, Power M, Schenk D, Seubert P, Snyder B, Soriano F, Tan H, Vitale J, Wadsworth S, Wolozin B, Zhao J (1995) Alzheimer-type neuropathology in transgenic mice overexpressing V717F β-amyloid precursor protein. Nature 373:523–527PubMedCrossRefGoogle Scholar
  30. Giasson BI, Duda JE, Quinn SM, Zhang B, Trojanowski JQ, Lee VM (2002) Neuronal α-synucleinopathy with severe movement disorder in mice expressing A53T human α-synuclein. Neuron 34:521–533PubMedCrossRefGoogle Scholar
  31. Gilks N, Kedersha N, Ayodele M, Shen L, Stoecklin G, Dember LM, Anderson P (2004) Stress granule assembly is mediated by prion-like aggregation of TIA-1. Mol Biol Cell 15:5383–5398PubMedCrossRefGoogle Scholar
  32. Glenner GG, Wong CW (1984a) Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun 120:885–890PubMedCrossRefGoogle Scholar
  33. Glenner GG, Wong CW (1984b) Alzheimer’s disease and Down’s syndrome: sharing of a unique cerebrovascular amyloid fibril protein. Biochem Biophys Res Commun 122:1131–1135PubMedCrossRefGoogle Scholar
  34. Glenner GG, Eanes ED, Bladen HA, Linke RP, Termine JD (1974) Beta-pleated sheet fibrils – a comparison of native amyloid with synthetic protein fibrils. J Histochem Cytochem 22:1141–1158PubMedCrossRefGoogle Scholar
  35. Goate A, Chartier-Harlin M-C, Mullan M, Brown J, Crawford F, Fidani L, Giuffra L, Haynes A, Irving N, James L, Mant R, Newton P, Rooke K, Roques P, Talbot C, Pericak-Vance M, Roses A, Williamson R, Rossor M, Owen M, Hardy J (1991) Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease. Nature 349:704–706PubMedCrossRefGoogle Scholar
  36. Godec MS, Asher DM, Masters CL, Kozachuk WE, Friedland RP, Gibbs CJ Jr, Gajdusek DC, Rapoport SI, Schapiro MB (1991) Evidence against the transmissibility of Alzheimer’s disease. Neurology 41:1320PubMedCrossRefGoogle Scholar
  37. Goldschmidt L, Teng PK, Riek R, Eisenberg D (2010) Identifying the amylome, proteins capable of forming amyloid-like fibrils. Proc Natl Acad Sci USA 107:3487–3492PubMedCrossRefGoogle Scholar
  38. Goudsmit J, Morrow CH, Asher DM, Yanagihara RT, Masters CL, Gibbs CJ Jr, Gajdusek DC (1980) Evidence for and against the transmissibility of Alzheimer’s disease. Neurology 30:945–950PubMedCrossRefGoogle Scholar
  39. Grad LI, Guest WC, Yanai A, Pokrishevsky E, O’Neill MA, Gibbs E, Semenchenko V, Yousefi M, Wishart DS, Plotkin SS, Cashman NR (2011) Intermolecular transmission of superoxide dismutase 1 misfolding in living cells. Proc Natl Acad Sci USA 108:16398–16403PubMedCrossRefGoogle Scholar
  40. Greenfield JG, Matthews WB (1954) Post-encephalitic parkinsonism with amyotrophy. J Neurol Neurosurg Psychiatry 17:50–56PubMedCrossRefGoogle Scholar
  41. Greenwald J, Buhtz C, Ritter C, Kwiatkowski W, Choe S, Maddelein ML, Ness F, Cescau S, Soragni A, Leitz D, Saupe SJ, Riek R (2010) The mechanism of prion inhibition by HET-S. Mol Cell 38:889–899PubMedCrossRefGoogle Scholar
  42. Grundke-Iqbal I, Iqbal K, Tung Y-C, Quinlan M, Wisniewski HM, Binder LI (1986) Abnormal phosphorylation of the microtubule-associated protein (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci USA 83:4913–4917PubMedCrossRefGoogle Scholar
  43. Guo JL, Lee VM-Y (2011) Seeding of normal tau by pathological tau conformers drives pathogenesis of Alzheimer-like tangles. J Biol Chem 286:15317–15331PubMedCrossRefGoogle Scholar
  44. Hadlow WJ, Eklund CM, Kennedy RC, Jackson TA, Whitford HW, Boyle CC (1974) Course of experimental scrapie virus infection in the goat. J Infect Dis 129:559–567PubMedCrossRefGoogle Scholar
  45. Halfmann R, Jarosz DF, Jones SK, Chang A, Lancaster AK, Lindquist S (2012) Prions are a common mechanism for phenotypic inheritance in wild yeasts. Nature 482:363–368PubMedCrossRefGoogle Scholar
  46. Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297:353–356PubMedCrossRefGoogle Scholar
  47. Hong M, Zhukareva V, Vogelsberg-Ragaglia V, Wszolek Z, Reed L, Miller BI, Geschwind DH, Bird TD, McKeel D, Goate A, Morris JC, Wilhelmsen KC, Schellenberg GD, Trojanowksi JQ, Lee VM-Y (1998) Mutation-specific functional impairments in distinct tau isoforms of hereditary FTDP-17. Science 282:1914–1917PubMedCrossRefGoogle Scholar
  48. Hou F, Sun L, Zheng H, Skaug B, Jiang QX, Chen ZJ (2011) MAVS forms functional prion-like aggregates to activate and propagate antiviral innate immune response. Cell 146:448–461PubMedCrossRefGoogle Scholar
  49. Hsiao K, Baker HF, Crow TJ, Poulter M, Owen F, Terwilliger JD, Westaway D, Ott J, Prusiner SB (1989) Linkage of a prion protein missense variant to Gerstmann-Sträussler syndrome. Nature 338:342–345PubMedCrossRefGoogle Scholar
  50. Hsiao K, Chapman P, Nilsen S, Eckman C, Harigaya Y, Younkin S, Yang F, Cole GJ (1996) Correlative memory deficits, Aβ elevation, and amyloid plaques in transgenic mice. Science 274:99–102PubMedCrossRefGoogle Scholar
  51. Hutton M, Lendon CL, Rizzu P, Baker M, Froelich S, Houlden H, Pickering-Brown S, Chakraverty S, Isaacs A, Grover A, Hackett J, Adamson J, Lincoln S, Dickson D, Davies P, Petersen RC, Stevens M, de Graaff E, Wauters E, van Baren J, Hillebrand M, Joosse M, Kwon JM, Nowotny P, Che LK, Norton J, Morris JC, Reed LA, Trojanowski J, Basun H, Lannfelt L, Neystat M, Fahn S, Dark F, Tannenberg T, Dodd PR, Hayward N, Kwok JBJ, Schofield PR, Andreadis A, Snowden J, Craufurd D, Neary D, Owen F, Oostra BA, Hardy J, Goate A, van Swieten J, Mann D, Lynch T, Heutink P (1998) Association of missense and 5′-splice-site mutations in tau with the inherited dementia FTDP-17. Nature 393:702–705PubMedCrossRefGoogle Scholar
  52. Johnson SM, Connelly S, Fearns C, Powers ET, Kelly JW (2012) The transthyretin amyloidoses: from delineating the molecular mechanism of aggregation linked to pathology to a regulatory-agency-approved drug. J Mol Biol. doi: 10.1016/j.jmb.2011.12.060 Google Scholar
  53. Johri A, Beal MF (2012) Antioxidants in Huntington’s disease. Biochim Biophys Acta 1822:664–674PubMedCrossRefGoogle Scholar
  54. Jubelt B (2004) Post-polio syndrome. Curr Treat Options Neurol 6:87–93PubMedCrossRefGoogle Scholar
  55. Kimberlin RH, Walker CA (1979) Pathogenesis of mouse scrapie: dynamics of agent replication in spleen, spinal cord and brain after infection by different routes. J Comp Pathol 89:551–562PubMedCrossRefGoogle Scholar
  56. Klatzo I, Gajdusek DC, Zigas V (1959) Pathology of kuru. Lab Invest 8:799–847PubMedGoogle Scholar
  57. Korczyn AD, Vakhapova V, Grinberg LT (2012) Vascular dementia. J Neurol Sci 322(1–2):2–10. doi: 10.1016/j.jns.2012.03.027 PubMedCrossRefGoogle Scholar
  58. Kordower JH, Chu Y, Hauser RA, Freeman TB, Olanow CW (2008) Lewy body-like pathology in long-term embryonic nigral transplants in Parkinson’s disease. Nat Med 14:504–506PubMedCrossRefGoogle Scholar
  59. Kosik KS, Joachim CL, Selkoe DJ (1986) Microtubule-associated protein tau is a major antigenic component of paired helical filaments in Alzheimer disease. Proc Natl Acad Sci USA 83:4044–4048PubMedCrossRefGoogle Scholar
  60. Larsson N-G (2010) Somatic mitochondrial DNA mutations in mammalian aging. Annu Rev Biochem 79:683–706PubMedCrossRefGoogle Scholar
  61. Lee JM, Ramos EM, Lee JH, Gillis T, Mysore JS, Hayden MR, Warby SC, Morrison P, Nance M, Ross CA, Margolis RL, Squitieri F, Orobello S, Di Donato S, Gomez-Tortosa E, Ayuso C, Suchowersky O, Trent RJ, McCusker E, Novelletto A, Frontali M, Jones R, Ashizawa T, Frank S, Saint-Hilaire MH, Hersch SM, Rosas HD, Lucente D, Harrison MB, Zanko A, Abramson RK, Marder K, Sequeiros J, Paulsen JS, Landwehrmeyer GB, Myers RH, Macdonald ME, Gusella JF (2012) CAG repeat expansion in Huntington disease determines age at onset in a fully dominant fashion. Neurology 78:690–695PubMedCrossRefGoogle Scholar
  62. Li JY, Englund E, Holton JL, Soulet D, Hagell P, Lees AJ, Lashley T, Quinn NP, Rehncrona S, Bjorklund A, Widner H, Revesz T, Lindvall O, Brundin P (2008) Lewy bodies in grafted neurons in subjects with Parkinson’s disease suggest host-to-graft disease propagation. Nat Med 14:501–503PubMedCrossRefGoogle Scholar
  63. Li M, Wang IX, Li Y, Bruzel A, Richards AL, Toung JM, Cheung VG (2011) Widespread RNA and DNA sequence differences in the human transcriptome. Science 333:53–58PubMedCrossRefGoogle Scholar
  64. Liu L, Drouet V, Wu JW, Witter MP, Small SA, Clelland C, Duff K (2012) Trans-synaptic spread of tau pathology in vivo. PLoS One 7:e31302PubMedCrossRefGoogle Scholar
  65. Luk KC, Kehm VM, Zhang B, O’Brien P, Trojanowski JQ, Lee VMY (2012) Intracerebral inoculation of pathological alpha-synuclein initiates a rapidly progressive neurodegenerative alpha-synucleinopathy in mice. J Exp Med 209:975–986PubMedCrossRefGoogle Scholar
  66. Macario AJL, Conway de Macario E (2005) Sick chaperones, cellular stress, and disease. N Engl J Med 353:1489–1501PubMedCrossRefGoogle Scholar
  67. Masters CL, Gajdusek DC, Gibbs CJ Jr (1981) Creutzfeldt-Jakob disease virus isolations from the Gerstmann-Sträussler syndrome. Brain 104:559–588PubMedCrossRefGoogle Scholar
  68. Masters CL, Simms G, Weinman NA, Multhaup G, McDonald BL, Beyreuther K (1985) Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc Natl Acad Sci USA 82:4245–4249PubMedCrossRefGoogle Scholar
  69. McKee AC, Cantu RC, Nowinski CJ, Hedley-Whyte ET, Gavett BE, Budson AE, Santini VE, Lee HS, Kubilus CA, Stern RA (2009) Chronic traumatic encephalopathy in athletes: progressive tauopathy after repetitive head injury. J Neuropathol Exp Neurol 68:709–735PubMedCrossRefGoogle Scholar
  70. McKinley MP, Bolton DC, Prusiner SB (1983) A protease-resistant protein is a structural component of the scrapie prion. Cell 35:57–62PubMedCrossRefGoogle Scholar
  71. McKinley MP, Braunfeld MB, Bellinger CG, Prusiner SB (1986) Molecular characteristics of prion rods purified from scrapie-infected hamster brains. J Infect Dis 154:110–120PubMedCrossRefGoogle Scholar
  72. Mead S (2006) Prion disease genetics. Eur J Hum Genet 14:273–281PubMedCrossRefGoogle Scholar
  73. Meyer-Luehmann M, Coomaraswamy J, Bolmont T, Kaeser S, Schaefer C, Kilger E, Neuenschwander A, Abramowski D, Frey P, Jaton AL, Vigouret JM, Paganetti P, Walsh DM, Mathews PM, Ghiso J, Staufenbiel M, Walker LC, Jucker M (2006) Exogenous induction of cerebral beta-amyloidogenesis is governed by agent and host. Science 313:1781–1784PubMedCrossRefGoogle Scholar
  74. Morais VA, De Strooper B (2010) Mitochondria dysfunction and neurodegenerative disorders: cause or consequence. J Alzheimers Dis 20(Suppl 2):S255–S263PubMedGoogle Scholar
  75. Morales R, Duran-Aniotz C, Castilla J, Estrada LD, Soto C (2012) De novo induction of amyloid-β deposition in vivo. Mol Psychiatry 17(12):1347–1353. doi: 10.1038/mp.2011.120 PubMedCrossRefGoogle Scholar
  76. Mougenot AL, Nicot S, Bencsik A, Morignat E, Verchère J, Lakhdar L, Legastelois S, Baron T (2012) Prion-like acceleration of a synucleinopathy in a transgenic mouse model. Neurobiol Aging 33(9):2225–2228. doi: 10.1016/j.neurobiolaging.2011.06.022 PubMedCrossRefGoogle Scholar
  77. Münch C, O’Brien J, Bertolotti A (2011) Prion-like propagation of mutant superoxide dismutase-1 misfolding in neuronal cells. Proc Natl Acad Sci USA 108:3548–3553PubMedCrossRefGoogle Scholar
  78. Olanow CW, McNaught KS (2006) Ubiquitin-proteasome system and Parkinson’s disease. Mov Disord 21:1806–1823PubMedCrossRefGoogle Scholar
  79. Olanow CW, Prusiner SB (2009) Is Parkinson’s disease a prion disorder? Proc Natl Acad Sci USA 106:12571–12572PubMedCrossRefGoogle Scholar
  80. Omalu BI, DeKosky ST, Minster RL, Kamboh MI, Hamilton RL, Wecht CH (2005) Chronic traumatic encephalopathy in a National Football League player. Neurosurgery 57:128–134PubMedCrossRefGoogle Scholar
  81. Omalu B, Hammers JL, Bailes J, Hamilton RL, Kamboh MI, Webster G, Fitzsimmons RP (2011) Chronic traumatic encephalopathy in an Iraqi war veteran with posttraumatic stress disorder who committed suicide. Neurosurg Focus 31:E3PubMedCrossRefGoogle Scholar
  82. Piro JR, Wang F, Walsh DJ, Rees JR, Ma J, Supattapone S (2011) Seeding specificity and ultrastructural characteristics of infectious recombinant prions. Biochemistry 50:7111–7116PubMedCrossRefGoogle Scholar
  83. Polymenidou M, Cleveland DW (2012) Prion-like spread of protein aggregates in neurodegeneration. J Exp Med 209:889–893PubMedCrossRefGoogle Scholar
  84. Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A, Pike B, Root H, Rubenstein J, Boyer R, Stenroos ES, Chandrasekharappa S, Athanassiadou A, Papapetropoulos T, Johnson WG, Lazzarini AM, Duvoisin RC, Di Iorio G, Golbe LI, Nussbaum RL (1997) Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 276:2045–2047PubMedCrossRefGoogle Scholar
  85. Prusiner SB (1982) Novel proteinaceous infectious particles cause scrapie. Science 21:136–144CrossRefGoogle Scholar
  86. Prusiner SB (1984) Some speculations about prions, amyloid, and Alzheimer’s disease. N Engl J Med 310:661–663PubMedCrossRefGoogle Scholar
  87. Prusiner SB (1989) Scrapie prions. Annu Rev Microbiol 43:345–374PubMedCrossRefGoogle Scholar
  88. Prusiner SB (2001) Shattuck lecture – neurodegenerative diseases and prions. N Engl J Med 344:1516–1526PubMedCrossRefGoogle Scholar
  89. Prusiner SB, McKinley MP, Bowman KA, Bolton DC, Bendheim PE, Groth DF, Glenner GG (1983) Scrapie prions aggregate to form amyloid-like birefringent rods. Cell 35:349–358PubMedCrossRefGoogle Scholar
  90. Prusiner SB, Scott M, Foster D, Pan K-M, Groth D, Mirenda C, Torchia M, Yang S-L, Serban D, Carlson GA, Hoppe PC, Westaway D, DeArmond SJ (1990) Transgenetic studies implicate interactions between homologous PrP isoforms in scrapie prion replication. Cell 63:673–686PubMedCrossRefGoogle Scholar
  91. Rabinovici GD, Miller BL (2010) Frontotemporal lobar degeneration: epidemiology, pathophysiology, diagnosis and management. CNS Drugs 24:375–398PubMedCrossRefGoogle Scholar
  92. Rademakers R, Hutton M (2007) The genetics of frontotemporal lobar degeneration. Curr Neurol Neurosci Rep 7:434–442PubMedCrossRefGoogle Scholar
  93. Ravits JM, La Spada AR (2009) ALS motor phenotype heterogeneity, focality, and spread: deconstructing motor neuron degeneration. Neurology 73:805–811PubMedCrossRefGoogle Scholar
  94. Ren PH, Lauckner JE, Kachirskaia I, Heuser JE, Melki R, Kopito RR (2009) Cytoplasmic penetration and persistent infection of mammalian cells by polyglutamine aggregates. Nat Cell Biol 11:219–225PubMedCrossRefGoogle Scholar
  95. Renton AE, Majounie E, Waite A, Simon-Sanchez J, Rollinson S, Gibbs JR, Schymick JC, Laaksovirta H, van Swieten JC, Myllykangas L, Kalimo H, Paetau A, Abramzon Y, Remes AM, Kaganovich A, Scholz SW, Duckworth J, Ding J, Harmer DW, Hernandez DG, Johnson JO, Mok K, Ryten M, Trabzuni D, Guerreiro RJ, Orrell RW, Neal J, Murray A, Pearson J, Jansen IE, Sondervan D, Seelaar H, Blake D, Young K, Halliwell N, Callister JB, Toulson G, Richardson A, Gerhard A, Snowden J, Mann D, Neary D, Nalls MA, Peuralinna T, Jansson L, Isoviita VM, Kaivorinne AL, Holtta-Vuori M, Ikonen E, Sulkava R, Benatar M, Wuu J, Chio A, Restagno G, Borghero G, Sabatelli M, Heckerman D, Rogaeva E, Zinman L, Rothstein JD, Sendtner M, Drepper C, Eichler EE, Alkan C, Abdullaev Z, Pack SD, Dutra A, Pak E, Hardy J, Singleton A, Williams NM, Heutink P, Pickering-Brown S, Morris HR, Tienari PJ, Traynor BJ (2011) A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 72:257–268PubMedCrossRefGoogle Scholar
  96. Ridley RM, Baker HF, Windle CP, Cummings RM (2006) Very long term studies of the seeding of beta-amyloidosis in primates. J Neural Transm 113:1243–1251PubMedCrossRefGoogle Scholar
  97. Roberson ED, Scearce-Levie K, Palop JJ, Yan F, Cheng IH, Wu T, Gerstein H, Yu GQ, Mucke L (2007) Reducing endogenous tau ameliorates amyloid beta-induced deficits in an Alzheimer’s disease mouse model. Science 316:750–754PubMedCrossRefGoogle Scholar
  98. Rogers DR (1965) Screening for amyloid with the thioflavin-T fluorescent method. Am J Clin Pathol 44:59–61PubMedGoogle Scholar
  99. Roos R, Gajdusek DC, Gibbs CJ Jr (1973) The clinical characteristics of transmissible Creutzfeldt-Jakob disease. Brain 96:1–20PubMedCrossRefGoogle Scholar
  100. Rosen RF, Fritz JJ, Dooyema J, Cintron AF, Hamaguchi T, Lah JJ, Levine H 3rd, Jucker M, Walker LC (2012) Exogenous seeding of cerebral beta-amyloid deposition in beta APP-transgenic rats. J Neurochem 120:660–666PubMedCrossRefGoogle Scholar
  101. Safar JG, Kellings K, Serban A, Groth D, Cleaver JE, Prusiner SB, Riesner D (2005) Search for a prion-specific nucleic acid. J Virol 79:10796–10806PubMedCrossRefGoogle Scholar
  102. Schellenberg GD, Bird TD, Wijsman EM, Orr HT, Anderson L, Nemens E, White JA, Bonnycastle L, Weber JL, Alonso ME, Potter H, Heston LL, Martin GM (1992) Genetic linkage evidence for a familial Alzheimer’s disease locus on chromosome 14. Science 258:668–671PubMedCrossRefGoogle Scholar
  103. Scott JR, Davies D, Fraser H (1992) Scrapie in the central nervous system: neuroanatomical spread of infection and Sinc control of pathogenesis. J Gen Virol 73(Pt 7):1637–1644PubMedCrossRefGoogle Scholar
  104. Seeley WW, Crawford RK, Zhou J, Miller BL, Greicius MD (2009) Neurodegenerative diseases target large-scale human brain networks. Neuron 62:42–52PubMedCrossRefGoogle Scholar
  105. Si K, Choi YB, White-Grindley E, Majumdar A, Kandel ER (2010) Aplysia CPEB can form prion-like multimers in sensory neurons that contribute to long-term facilitation. Cell 140:421–435PubMedCrossRefGoogle Scholar
  106. Silveira JR, Raymond GJ, Hughson AG, Race RE, Sim VL, Hayes SF, Caughey B (2005) The most infectious prion protein particles. Nature 437:257–261PubMedCrossRefGoogle Scholar
  107. Spillantini MG, Schmidt ML, Lee VM-Y, Trojanowski JQ, Jakes R, Goedert M (1997) α-Synuclein in Lewy bodies. Nature 388:839–840PubMedCrossRefGoogle Scholar
  108. St. George-Hyslop PH (1999) Molecular genetics of Alzheimer disease. In: Terry RD, Katzman R, Bick KL, Sisodia SS (eds) Alzheimer disease, 2nd edn. Lippincott Williams & Wilkins, Philadelphia, pp 311–326Google Scholar
  109. St. George-Hyslop P, Haines J, Rogaev E, Mortilla M, Vaula G, Pericak-Vance M, Foncin J-F, Montesi M, Bruni A, Sorbi S, Rainero I, Pinessi L, Pollen D, Polinsky R, Nee L, Kennedy J, Macciardi F, Rogaeva E, Liang Y, Alexandrova N, Lukiw W, Schlumpf K, Tanzi R, Tsuda T, Farrer L, Cantu J-M, Duara R, Amaducci L, Bergamini L, Gusella J, Roses A, McLachlan DC (1992) Genetic evidence for a novel familial Alzheimer’s disease locus on chromosome 14. Nat Genet 2:330–334PubMedCrossRefGoogle Scholar
  110. Stevens DJ, Walter ED, Rodriguez A, Draper D, Davies P, Brown DR, Millhauser GL (2009) Early onset prion disease from octarepeat expansion correlates with copper binding properties. PLoS Pathog 5:e1000390PubMedCrossRefGoogle Scholar
  111. Stöhr J, Watts JC, Mensinger ZL, Oehler A, Grillo SK, DeArmond SJ, Prusiner SB, Giles K (2012) Purified and synthetic Alzheimer’s Aβ prions. Proc Natl Acad Sci USA 109(27):11025–11030PubMedCrossRefGoogle Scholar
  112. Taraboulos A, Jendroska K, Serban D, Yang S-L, DeArmond SJ, Prusiner SB (1992) Regional mapping of prion proteins in brains. Proc Natl Acad Sci USA 89:7620–7624PubMedCrossRefGoogle Scholar
  113. Tatzelt J, Groth DF, Torchia M, Prusiner SB, DeArmond SJ (1999) Kinetics of prion protein accumulation in the CNS of mice with experimental scrapie. J Neuropathol Exp Neurol 58:1244–1249PubMedCrossRefGoogle Scholar
  114. Tracey KJ (2009) Reflex control of immunity. Nat Rev Immunol 9:418–428PubMedCrossRefGoogle Scholar
  115. Udan M, Baloh RH (2011) Implications of the prion-related Q/N domains in TDP-43 and FUS. Prion 5:1–5PubMedCrossRefGoogle Scholar
  116. Valentine JS, Doucette PA, Zittin Potter S (2005) Copper-zinc superoxide dismutase and amyotrophic lateral sclerosis. Annu Rev Biochem 74:563–593PubMedCrossRefGoogle Scholar
  117. van der Kamp MW, Daggett V (2009) The consequences of pathogenic mutations to the human prion protein. Protein Eng Des Sel 22:461–468PubMedCrossRefGoogle Scholar
  118. Volpicelli-Daley LA, Luk KC, Patel TP, Tanik SA, Riddle DM, Stieber A, Meaney DF, Trojanowski JQ, Lee VM (2011) Exogenous alpha-synuclein fibrils induce Lewy body pathology leading to synaptic dysfunction and neuron death. Neuron 72:57–71PubMedCrossRefGoogle Scholar
  119. Watts JC, Giles K, Grillo SK, Lemus A, DeArmond SJ, Prusiner SB (2011) Bioluminescence imaging of Abeta deposition in bigenic mouse models of Alzheimer’s disease. Proc Natl Acad Sci USA 108:2528–2533PubMedCrossRefGoogle Scholar
  120. Wheeler VC, Gutekunst CA, Vrbanac V, Lebel LA, Schilling G, Hersch S, Friedlander RM, Gusella JF, Vonsattel JP, Borchelt DR, MacDonald ME (2002) Early phenotypes that presage late-onset neurodegenerative disease allow testing of modifiers in Hdh CAG knock-in mice. Hum Mol Genet 11:633–640PubMedCrossRefGoogle Scholar
  121. Wickner RB (1994) [URE3] as an altered URE2 protein: evidence for a prion analog in Saccharomyces cerevisiae. Science 264:566–569PubMedCrossRefGoogle Scholar
  122. Wille H, Bian W, McDonald M, Kendall A, Colby DW, Bloch L, Ollesch J, Boronvinskiy AL, Cohen FE, Prusiner SB, Stubbs G (2009) Natural and synthetic prion structure from X-ray fiber diffraction. Proc Natl Acad Sci USA 106:16990–16995PubMedCrossRefGoogle Scholar
  123. Wood JG, Mirra SS, Pollock NJ, Binder II (1986) Neurofibrillary tangles of Alzheimer’s disease share antigenic determinants with the axonal microtubule-associated protein tau. Proc Natl Acad Sci USA 83:4040–4043PubMedCrossRefGoogle Scholar
  124. Yuan J, Yankner BA (2000) Apoptosis in the nervous system. Nature 407:802–809PubMedCrossRefGoogle Scholar
  125. Zilber N, Rannon L, Alter M, Kahana E (1983) Measles, measles vaccination, and risk of subacute sclerosing panencephalitis (SSPE). Neurology 33:1558–1564PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Institute for Neurodegenerative DiseasesUniversity of CaliforniaSan FranciscoUSA
  2. 2.Department of NeurologyUniversity of CaliforniaSan FranciscoUSA

Personalised recommendations