Skip to main content

Realtime, Physics-Based Marker Following

  • Conference paper
Motion in Games (MIG 2012)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7660))

Included in the following conference series:

Abstract

Finding torques that control a physical model to follow motion capture marker data can be complicated. We present a simple method for first constraining a physical model to follow marker data using forward simulation with intuitive parametrization. Essentially, the markers attach to the model through joint constraints and drag the body into position. We then use forward simulation to compute joint torques that produce the same movement. This is accomplished by adding constraints on the relative angular velocities of the body parts to the physical model. Framing the movement in terms of constraints on the model allows us to use the Open Dynamics physics engine (ODE) to find torques that simultaneously account for joint limits, body momentum, and ground/contact constraints. Although balanced movement still requires some external stabilizing torques, these torques are generally quite small and can potentially be addressed by minor changes in foot placement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sugihara, T.: Solvability-unconcerned inverse kinematics by the levenberg-marquardt method. IEEE Transactions on Robotics 27(5), 984–991 (2011)

    Article  MathSciNet  Google Scholar 

  2. Zordan, V.B., Hodgins, J.K.: Motion capture-driven simulations that hit and react. In: Proceedings of the 2002 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA 2002, pp. 89–96. ACM, New York (2002)

    Chapter  Google Scholar 

  3. Geijtenbeek, T., Pronost, N., Egges, A., Overmars, M.H.: Interactive character animation using simulated physics. In: Eurographics (State of the Art Reports) (2011)

    Google Scholar 

  4. Ko, H., Badler, N.: Animating human locomotion with inverse dynamics. IEEE Computer Graphics and Applications 16(2), 50–59 (1996)

    Article  Google Scholar 

  5. Witkin, A., Kass, M.: Spacetime constraints. SIGGRAPH Comput. Graph. 22(4), 159–168 (1988)

    Article  Google Scholar 

  6. van de Panne, M., Lamouret, A.: Guided optimization for balanced locomotion. In: Eurographics Workshop on Computer Animation and Simulation 1995, pp. 165–177 (1995)

    Google Scholar 

  7. Smith, R.: Intelligent Motion Control with an Artificial Cerebellum. PhD thesis, University of Auckland, New Zealand (July 1998)

    Google Scholar 

  8. Smith, R.: Constraints in rigid body dynamics. Best of Game Programming Gems (2008)

    Google Scholar 

  9. Isaacs, P.M., Cohen, M.F.: Controlling dynamic simulation with kinematic constraints. SIGGRAPH Comput. Graph. 21(4), 215–224 (1987)

    Article  Google Scholar 

  10. Zordan, V.B., van der Horst, N.C.: Mapping optical motion capture data to skeletal motion using a physical model. In: Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA 2003, pp. 245–250. Eurographics Association, Aire-la-Ville (2003)

    Google Scholar 

  11. Faure, F., Debunne, G., Cani, M.P., Multon, F.: Dynamic analysis of human walking. In: Eurographics Workshop on Computer Animation and Simulation, EGCAS (September 1997), Published under the name Marie-Paule Cani-Gascuel

    Google Scholar 

  12. Zordan, V.B., Hodgins, J.K.: Tracking and modifying upper-body human motion data with dynamic simulation. In: Computer Animation and Simulation 1999, pp. 13–22. Eurographics (1999)

    Google Scholar 

  13. Shapiro, A., Pighin, F., Faloutsos, P.: Hybrid control for interactive character animation. In: Proceedings of the 11th Pacific Conference on Computer Graphics and Applications, PG 2003, p. 455. IEEE Computer Society, Washington, DC (2003)

    Chapter  Google Scholar 

  14. Zordan, V.B., Majkowska, A., Chiu, B., Fast, M.: Dynamic response for motion capture animation. In: ACM SIGGRAPH 2005 Papers, SIGGRAPH 2005, pp. 697–701. ACM, New York (2005)

    Google Scholar 

  15. Wrotek, P., Jenkins, O.C., McGuire, M.: Dynamo: dynamic, data-driven character control with adjustable balance. In: Proceedings of the 2006 ACM SIGGRAPH Symposium on Videogames, Sandbox 2006, pp. 61–70. ACM, New York (2006)

    Chapter  Google Scholar 

  16. Allen, B., Chu, D., Shapiro, A., Faloutsos, P.: On the beat!: timing and tension for dynamic characters. In: Proceedings of the 2007 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA 2007, pp. 239–247. Eurographics Association, Aire-la-Ville (2007)

    Google Scholar 

  17. Abe, Y., da Silva, M., Popović, J.: Multiobjective control with frictional contacts. In: Proceedings of the 2007 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA 2007, pp. 249–258. Eurographics Association, Aire-la-Ville (2007)

    Google Scholar 

  18. Liu, L., Yin, K., van de Panne, M., Shao, T., Xu, W.: Sampling-based contact-rich motion control. ACM Trans. Graph. 29, 128:1–128:10 (2010)

    Google Scholar 

  19. Ye, Y., Liu, C.K.: Optimal feedback control for character animation using an abstract model. ACM Trans. Graph. 29, 74:1–74:9 (2010)

    Google Scholar 

  20. Muico, U., Lee, Y., Popović, J., Popović, Z.: Contact-aware nonlinear control of dynamic characters. ACM Trans. Graph. 28(3), 81:1–81:9 (2009)

    Google Scholar 

  21. Liu, M., Micaelli, A., Evrard, P., Escande, A., Andriot, C.: Interactive dynamics and balance of a virtual character during manipulation tasks. In: 2011 IEEE International Conference on Robotics and Automation (ICRA), pp. 1676–1682 (May 2011)

    Google Scholar 

  22. Baraff, D.: Linear-time dynamics using lagrange multipliers. In: Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 1996, pp. 137–146. ACM, New York (1996)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cooper, J.L., Ballard, D. (2012). Realtime, Physics-Based Marker Following. In: Kallmann, M., Bekris, K. (eds) Motion in Games. MIG 2012. Lecture Notes in Computer Science, vol 7660. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34710-8_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34710-8_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34709-2

  • Online ISBN: 978-3-642-34710-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics