Abstract

In this paper we use the spectra of a Hermitian matrix and the coefficient of the symmetric polynomials to cluster different human poses taken by an inexpensive 3D camera, the Microsoft ’Kinect’ for XBox 360. We construct a Hermitian matrix from the joints and the angles subtended by each pair of limbs using the three-dimensional ’skeleton’ data delivered by Kinect. To compute the angles between a pair of limbs we construct the line graph from the given skeleton. We construct pattern vectors from the eigenvectors of the Hermitian matrix. The pattern vectors are embedded into a pattern-space using Principal Component Analysis (PCA). We compere the results obtained with the Laplacian spectra pattern vectors. The empirical results show that using the angular information can be efficiently used to clusters different human poses.

References

  1. 1.
    Bunke, H., Foggia, P., Guidobaldi, C., Vento, M.: Graph Clustering Using the Weighted Minimum Common Supergraph. In: Hancock, E.R., Vento, M. (eds.) GbRPR 2003. LNCS, vol. 2726, Springer, Heidelberg (2003)CrossRefGoogle Scholar
  2. 2.
    Chung, F.R.K.: Spectral Graph Theory. American Mathematical Society (1997)Google Scholar
  3. 3.
    Luo, B., Wilson, R.C., Hancock, E.R.: Spectral Feature Vectors for Graph Clustering. In: Hancock, E.R., Vento, M. (eds.) GbRPR 2003. LNCS, vol. 2726, pp. 190–201. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  4. 4.
    Pavan, M., Pelillo, M.: Dominant sets and hierarchical clustering. In: Proceedings 9th IEEE Conference on Computer Vision and Pattern Recognition I, pp. 362–369 (2003)Google Scholar
  5. 5.
    Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 22, 888–905 (2000)CrossRefGoogle Scholar
  6. 6.
    Mateus, D., Cuzzolin, F., Horaud, R.P., Boyer, E.: Articulated shape matching using laplacian eigenfunctions and unsupervised point registration. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR (2008)Google Scholar
  7. 7.
    van Leuken, R.H., Symonova, O., Veltkamp, R.C., De Amicis, R.: Complex Fiedler Vectors for Shape Retrieval. In: da Vitoria Lobo, N., Kasparis, T., Roli, F., Kwok, J.T., Georgiopoulos, M., Anagnostopoulos, G.C., Loog, M. (eds.) S+SSPR 2008. LNCS, vol. 5342, pp. 167–176. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Ng, A.Y., Jordan, M.I., Weiss, Y.: On spectral clustering: Analysis and an algorithm. In: Advances in Neural Information Processing Systems (2002)Google Scholar
  9. 9.
    Yu, S.X., Shi, J.: Multiclass spectral clustering. In: International Conference on Computer Vision (2003)Google Scholar
  10. 10.
    Microsoft: MS Kinect for XBOX 360, http://www.xbox.com/kinect
  11. 11.
    Wilson, R.C., Hancock, E.R., Luo, B.: Pattern vectors from algebraic graph theory. IEEE Transactions on Pattern Analysis and Machine Intelligence 27, 1112–1124 (2005)CrossRefGoogle Scholar
  12. 12.
    Luo, B., Wilson, R.C., Hancock, E.R.: Spectral embedding of graphs. Pattern Recognition 36, 2213–2223 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Muhammad Haseeb
    • 1
  • Edwin R. Hancock
    • 1
  1. 1.Department of Computer ScienceThe University of YorkUK

Personalised recommendations