Advertisement

Abstract

The accuracy of automated classification (labeling) of single patterns, especially printed, hand-printed, or handwritten characters, has leveled off. Further gains in accuracy require classifying sequences of patterns. Linguistic context, already widely used, relies on 1-D lexical and syntactic constraints. Style-constrained classification exploits the shape-similarity of sets of same-source (isogenous) characters of either the same or different classes. For understanding tables and forms, 2-D structural and relational constraints are necessary. Applications of pattern recognition that do not exceed the limits of human senses and cognition can benefit from green interaction wherein operator corrections are recycled to the classifier.

Keywords

Devijver adaptive classification style consistency tables green interaction 

References

  1. 1.
    Veeramachaneni, S., Sarkar, P., Nagy, G.: Modeling Context as Statistical Dependence. In: Dey, A.K., Kokinov, B., Leake, D.B., Turner, R. (eds.) CONTEXT 2005. LNCS (LNAI), vol. 3554, pp. 515–528. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Devijver, P.A.: Relationship between statistical risk and the least-mean-square error criterion in pattern recognition. In: Proceedings of the First International Joint Conference on Pattern Recognition, Washington, DC (1973)Google Scholar
  3. 3.
    Devijver, P.A.: On a new class of bounds on Bayes risk in multihypothesis pattern recognition. IEEE Trans. on Computers C-23(1), 70–80 (1974)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Devijver, P.A., Kittler, J.: Pattern recognition: A statistical approach. Prentice/Hall (1982)Google Scholar
  5. 5.
    Devijver, P.A., Ronse, C.: Connected Components in Binary Images: The Detection Problem. John Wiley & Sons, Inc., New York (1984)Google Scholar
  6. 6.
    Devijver, P.A.: Classification in Markov Chains for minimum symbol error rate. In: Proceedings of International Conference on Pattern Recognition, pp. 1334–1336 (1984)Google Scholar
  7. 7.
    Devijver, P.A.: Baum’s forward-backward algorithm revisited. Pattern Recognition Letters 3(6), 369–373 (1985)zbMATHCrossRefGoogle Scholar
  8. 8.
    Devijver, P.A., Dekesel, M.: Computing multidimensional Delaunay tessellations. Pattern Recognition Letters 4(5-6), 311–316Google Scholar
  9. 9.
    Nagy, G., Zhang, X.: Simple statistics for complex features spaces. In: Basu, M., Ho, T.K. (eds.) Data Complexity in Pattern Recognition, pp. 173–195. Springer (2006)Google Scholar
  10. 10.
    Nagy, G., Shelton, G.L.: Self-Corrective Character Recognition System. IEEE Trans. Information Theory 12(2), 215–222 (1966)CrossRefGoogle Scholar
  11. 11.
    Nagy, G.: The Application of Nonsupervised Learning to Character Recognition. In: Kanal, L. (ed.) Pattern Recognition, pp. 391–398. Thompson Book Company, Washington (1968)Google Scholar
  12. 12.
    Baird, H.S., Nagy, G.: A Self-correcting 100-font Classifier. In: Proceedings of SPIE Conference on Document Recognition, San Jose, CA. SPIE, vol. 2181, pp. 106–115 (February 1994)Google Scholar
  13. 13.
    Ho, Y.C., Agrawala, A.K.: On the self-learning scheme of Nagy and Shelton. Proceedings of the IEEE 55, 1764–1765 (1967)CrossRefGoogle Scholar
  14. 14.
    Nagy, G., Tuong, N.G.: On a Theoretical Pattern Recognition Model of Ho and Agrawala. Proceedings of the IEEE 56(6), 1108–1109 (1968)CrossRefGoogle Scholar
  15. 15.
    Veeramachaneni, S., Nagy, G.: Classifier Adaptation with Non-representative Training Data. In: Lopresti, D.P., Hu, J., Kashi, R.S. (eds.) DAS 2002. LNCS, vol. 2423, pp. 123–133. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  16. 16.
    Casey, R.G., Nagy, G.: Recognition of Printed Chinese Characters. IEEE Trans. Electronic Computers 15(1), 91–101 (1966)CrossRefGoogle Scholar
  17. 17.
    Ascher, R.N., Nagy, G.: A Means for Achieving a High Degree of Compaction on Scan-Digitized Printed Text. IEEE Trans. Computers 23(11), 1174–1179 (1974)zbMATHCrossRefGoogle Scholar
  18. 18.
    Casey, R.G., Nagy, G.: Decision Tree Design Using a Probabilistic Model. IEEE Trans. Information Theory 30(1), 93–99 (1984)CrossRefGoogle Scholar
  19. 19.
    Casey, R.G., Nagy, G.: Autonomous Reading Machine. IEEE Trans. Computers 17(5), 492–503 (1968)CrossRefGoogle Scholar
  20. 20.
    Casey, R.G., Nagy, G.: Advances in Pattern Recognition. Scientific American 224(4), 56–71 (1971)CrossRefGoogle Scholar
  21. 21.
    Nagy, G., Seth, S., Einspahr, K.: Decoding Substitution Ciphers by means of Word Matching with Application to OCR. IEEE Trans. Pattern Analysis and Machine Intelligence 9(5), 710–715 (1987)CrossRefGoogle Scholar
  22. 22.
    Ho, T.K., Nagy, G.: OCR with no shape training. In: Proceedings of International Conference on Pattern Recognition-XV, Barcelona, Spain, vol. 4, pp. 27–30 (September 2000)Google Scholar
  23. 23.
    Nagy, G.: Teaching a computer to read. In: Proceedings of the Eleventh International Conference on Pattern Recognition, vol. 2, pp. 225–229, The Hague (1992)Google Scholar
  24. 24.
    Veeramachaneni, S., Nagy, G.: Analytical results on style-constrained Bayesian classification of pattern fields. IEEE Trans. Pattern Analysis and Machine Intelligence 29(7), 1280–1285 (2007)CrossRefGoogle Scholar
  25. 25.
    Sarkar, P., Nagy, G.: Style consistent classification of isogenous patterns. IEEE Trans. Pattern Analysis and Machine Intelligence 27(1), 88–98 (2005)CrossRefGoogle Scholar
  26. 26.
    Veeramachaneni, S., Nagy, G.: Style context with second order statistics. IEEE Trans. Pattern Analysis and Machine Intelligence 27(1), 14–22 (2005)CrossRefGoogle Scholar
  27. 27.
    Tijerino, Y.A., Embley, D.W., Lonsdale, D. W., Nagy, G.: Towards ontology generation from tables. World Wide Web Journal 6(3) (2005)Google Scholar
  28. 28.
    Zou, J., Nagy, G.: Visible models for interactive pattern recognition. Pattern Recognition Letters 28, 2335–2342 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • George Nagy
    • 1
  1. 1.RPITroyUSA

Personalised recommendations