Skip to main content

Side Effects of Bacillus thuringiensis Toxins on Spiders

  • Chapter
  • First Online:
Spider Ecophysiology

Abstract

While insecticidal crystal (Cry) proteins produced by Bacillus thuringiensis (Bt) have been used for pest control for almost a century, genetically engineered (GE) plants producing Cry proteins are commercially grown since 1996. For toxicity, Cry proteins need to be ingested, gut environment needs to be suitable, and specific receptors need to be available. Cry proteins have a narrow spectrum of activity and target lepidopterans, coleopterans, or dipterans. Cry proteins produced in Bt crops get diluted when transferred from plants to tissue-feeding herbivores to higher trophic levels. Phloem-feeding herbivores (e.g., aphids) contain negligible amounts of Cry protein. The prey spectrum of spiders living in agricultural fields includes phloem and tissue-feeding herbivores as well as species of higher trophic levels. Therefore, spiders ingest various amounts of Cry protein via prey in Bt crops. In addition there is evidence that spiders can ingest Cry protein when feeding on pollen of Bt crops. Laboratory experiments have demonstrated that spiders are not affected directly by Bt formulations or plant-expressed Cry proteins. Also, no deleterious effects of Bt proteins on spiders were reported from numerous field studies conducted with Bt formulations and Bt crops.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amalin DM, Peña JE, Yu SJ, McSorley R (2000) Selective toxicity of some pesticides to Hibana velox (Araneae: Anyphaenidae), a predator of citrus leafminer. Fla Entomol 83:254–262

    Article  CAS  Google Scholar 

  • Árpás K, Tóth F, Kiss J (2005) Foliage-dwelling arthropods in Bt-transgenic and isogenic maize: a comparison through spider web analysis. Acta Phytopathol Entomol Hung 40:347–353

    Article  Google Scholar 

  • Bajwa WI, Aliniazee MT (2001) Spider fauna in apple ecosystem of Western Oregon and its field susceptibility to chemical and microbial insecticides. J Econ Entomol 94:68–75

    Article  PubMed  CAS  Google Scholar 

  • Chen M, Ye GY, Liu ZC, Fang Q, Hu C, Peng YF, Shelton AM (2009) Analysis of Cry1Ab toxin bioaccumulation in a food chain of Bt rice, an herbivore and a predator. Ecotoxicology 18:230–238

    Article  PubMed  CAS  Google Scholar 

  • Glare TR, O’Callaghan M (2000) Bacillus thuringiensis: biology, ecology and safety. Wiley, Chicester

    Google Scholar 

  • Harwood JE, Wallin WG, Obrycki JJ (2005) Uptake of Bt endotoxins by nontarget herbivores and higher order arthropod predators: molecular evidence from a transgenic corn agroecosystem. Mol Ecol 14:2815–2823

    Article  PubMed  CAS  Google Scholar 

  • Hilburn DJ, Jennings DT (1988) Terricolous spiders (Araneae) of insecticide-treated spruce-fir forests in West-Central Maine. Great Lakes Entomol 21:105–114

    Google Scholar 

  • James C (2011) Global status of commercialized biotech/GM crops: 2011. ISAAA Brief No. 43, ISAAA, Ithaca, NY, USA

    Google Scholar 

  • Jyoti DP, Goud KB (2008) Safety of organic amendments and microbial pesticides to natural enemies in brinjal ecosystem. Annu Plant Prot Sci 10:12–16

    Google Scholar 

  • Knowles BH (1994) Mechanism of action of Bacillus thuringiensis insecticidal δ-endotoxins. Adv In Insect Phys 24:275–308

    Article  CAS  Google Scholar 

  • Li K, Tian J, Wang Q, Chen Q, Chen M, Wang H, Zhou Y, Peng Y, Xiao J, Ye G (2011) Application of a novel method PCR-ligase detection reaction for tracking predator—prey trophic links in insect-resistant GM rice ecosystem. Ecotoxicology 20:2090–2100

    Article  PubMed  CAS  Google Scholar 

  • Ludy C (2004) Intentional pollen feeding in the spider Araneus diadematus Clerck, 1757. Newslett Br Arachnol Soc 101:4–5

    Google Scholar 

  • Ludy C, Lang A (2006) Bt maize pollen exposure and impact on the garden spider, Araneus diadematus. Entomol Exp Appl 118:145–156

    Article  CAS  Google Scholar 

  • Maxwell EM, Fadamiro HY (2006) Evaluation of several reduced-risk insecticides in combination with action threshold for managing lepidopteran pests of cole crops in Alabama. Fla Entomol 89:117–126

    Article  Google Scholar 

  • Meissle M, Romeis J (2009) The web-building spider Theridion impressum (Araneae: Theridiidae) is not adversely affected by Bt maize resistant to corn rootworms. Plant Biotechnol J 7:645–656

    Article  CAS  Google Scholar 

  • Muckenfuss AE, Shepart BM (1994) Seasonal abundance and response of diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae), and natural enemies to esfenvalerate and Bacillus thuringiensis subsp. kurstaki Berliner in coastal South Carolina. J Agric Entomol 11:361–373

    Google Scholar 

  • Naranjo SE (2009) Impacts of Bt crops on non-target invertebrates and insecticide use patterns. CAB Rev: Perspect Agricult, Vet Sci, Nutr Nat Resour 4(011):1–23

    Google Scholar 

  • Nyffeler M, Sunderland KD (2003) Composition, abundance and pest control potential of spider communities in agroecosystems: a comparison of European and US studies. Agr Ecosyst Environ 95:579–612

    Article  Google Scholar 

  • OGTR (2002) Risk assessment and risk management plan—commercial release of Bollgard II cotton. Office of the Gene Technology Regulator, Australia. http://www.ogtr.gov.au/internet/ogtr/publishing.nsf/content/dir012-3/$FILE/dir012finalrarmp.pdf. Accessed 26 Apr 2012

  • Patel MC, Vyas RN (2000) Field bioefficacy of Bacillus thuringiensis var. kurstaki and neem based formulations against cotton bollworms. Indian J Plant Prot 28:78–83

    Google Scholar 

  • Pekár S (2002) Susceptibility of the spider Theridion impressum to 17 pesticides. J Pestic Sci 75:51–55

    Google Scholar 

  • Pekár S, Haddad CR (2005) Can agrobiont spiders (Araneae) avoid a surface with pesticide residues? Pest Manag Sci 61:1179–1185

    Article  PubMed  Google Scholar 

  • Peterson JA, Romero SA, Harwood JD (2010) Pollen interception by linyphiid spiders in a corn agroecosystem: implications for dietary diversification and risk-assessment. Arthropod Plant Interact 4:207–217

    Article  Google Scholar 

  • Peterson JA, Lundgren JG, Harwood JD (2011) Interactions of transgenic Bacillus thuringiensis insecticidal crops with spiders (Araneae). J Arachnol 39:1–21

    Article  Google Scholar 

  • Pfannenstiel RS (2012) Direct consumption of cotton pollen improves survival and development of Cheiracanthium inclusum (Araneae: Miturgidae) spiderlings. Ann Entomol Soc Am 105:275–279

    Article  Google Scholar 

  • Rieske LK, Buss LJ (2001) Effects of gypsy moth suppression tactics on litter- and ground-dwelling arthropods in the central hardwood forests of the Cumberland Plateau. For Ecol Manage 149:181–195

    Article  Google Scholar 

  • Romeis J, Meissle M (2011) Non-target risk assessment of Bt crops—Cry protein uptake by aphids. J Appl Entomol 135:1–6

    Article  CAS  Google Scholar 

  • Romeis J, Meissle M, Bigler F (2006) Non-target risk assessment of Bt crops—Cry protein uptake by aphids. Nat Biotechnol 24:63–71

    Article  PubMed  CAS  Google Scholar 

  • Saikia P, Parameswaran S (2002) Eco-friendly strategies for the management of rice leaffolder, Cnaphalocrocis medinalis Guenee. Annu Plant Prot Sci 10:12–16

    Google Scholar 

  • Sanders D (2013) Herbivory in spiders. In: Nentwig W (ed) Spider ecophysiology. Springer, Heidelberg (this volume)

    Google Scholar 

  • Srinivas PS, Panwar VPS (2003) Efficacy of neem and Bt formulations against Chilo partellus (Seinhoe) infestation in maize. Pestic Res J 15:131–133

    Google Scholar 

  • Tian JC, Chen Y, Li ZL, Li K, Chen M, Peng YF, Hu C, Shelton AM, Ye GY (2012) Transgenic Cry1Ab rice does not impact ecological fitness and predation of a generalist spider. PLoS One 7:e35164

    Article  PubMed  CAS  Google Scholar 

  • Tian JC, Liu ZC, Chen M, Chen Y, Chen XX, Peng YF, Hu C, Ye GY (2010) Laboratory and field assessments of prey-mediated effects of transgenic Bt rice on Ummeliata insecticeps (Araneida: Linyphiidae). Environ Entomol 39:1369–1377

    Article  PubMed  CAS  Google Scholar 

  • US EPA (2001) Biopesticides Registration Action Document—Bacillus thuringiensis plant-incorporated protectants. US EPA Washington DC, USA http://www.epa.gov/opp00001/biopesticides/pips/bt_brad.htm. Accessed 26 Apr 2012

Download references

Acknowledgements

I am grateful to Jörg Romeis for valuable comments on an earlier version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Meissle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Meissle, M. (2013). Side Effects of Bacillus thuringiensis Toxins on Spiders. In: Nentwig, W. (eds) Spider Ecophysiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33989-9_32

Download citation

Publish with us

Policies and ethics