Skip to main content

Predation by Spitting Spiders: Elaborate Venom Gland, Intricate Delivery System

  • Chapter
  • First Online:
Spider Ecophysiology

Abstract

Spitting spiders (Araneae: Scytodidae) subdue prey by entangling them at a distance with a mixture of silk, glue, and perhaps venom. All of the components of this mixture originate in the venom glands, a pair of relatively elaborate structures consisting of five histologically distinct regions, the anterior three producing venom and the posterior two, comprising the largest lobe of the gland, producing silk and glue. The venom gland and its products anchor a suite of tightly linked adaptations that constitute the predatory system of these remarkable spiders. The spitting requires considerable metabolic expenditure both in the form of maintenance of impressively large venom glands and in the form of the biosynthesis of the proto-silk and the glue that are the primary constituents of the spit. Sensory input allowing identification and localization of the potential prey and neural coordination of the spit ejection itself also must occur. It may be that an important part of expectoration, the oscillations of the fangs (contributing to the zigzag pattern of spit that effectively covers a prey item), once triggered, does not require further neural input, but that possibility remains to be confirmed. The chemical, physical, and microfluidic properties of the proto-silk and glue mixture are also crucial for the proper functioning of the spitting system; at the moment, these properties are poorly understood except insofar as they may be similar to the analogous properties of the proto-silk and glue produced in the opisthosomal silk glands of spiders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson JF, Prestwich KN (1975) The fluid pressure pumps of spiders (Chelicerata, Araneae). Z Morph Tiere 81:257–277

    Article  Google Scholar 

  • Binford G (2013) The evolution of a toxic enzyme in sicariid spiders. In: Nentwig W (ed) Spider ecophysiology. Springer, Heidelberg (this volume)

    Google Scholar 

  • Binford GJ, Wells MA (2003) The phylogenetic distribution of sphingomyelinase D activity in venoms of haplogyne spiders. Comp Biochem Physiol B 135:25–33

    Article  PubMed  Google Scholar 

  • Choresh O, Bayarmagnai B, Lewis RV (2009) Spider web glue: two proteins expressed from opposite strands of the same DNA sequence. Biomacromolecules 10:2852–2856

    Article  PubMed  CAS  Google Scholar 

  • Clements R, Li D (2005) Regulation and non-toxicity of the spit from the pale spitting spider Scytodes pallida (Araneae: Scydodidae). Ethology 111:311–321

    Article  Google Scholar 

  • Coddington JA (2005) Phylogeny and classification of spiders. In: Ubick D, Paquin P, Cushing PE, Roth V (eds) Spiders of North America: an identification manual. American Arachnological Society

    Google Scholar 

  • Eberhard WG (1987) How spiders initiate airborne lines. J Arachnol 15:1–9

    Google Scholar 

  • Foelix RF (2011) Biology of spiders. Oxford University Press, Oxford

    Google Scholar 

  • Gardner T, Cecchi G, Magnasco M, Laje R, Mindlin GB (2001) Simple motor gestures for birdsongs. Phys Rev Lett 87:208101–1

    Article  Google Scholar 

  • Gilbert C, Rayor LS (1985) Predatory behavior of spitting spiders (Araneae: Scytodidae) and the evolution of prey wrapping. J Arachnol 13:231–241

    Google Scholar 

  • Japyassú HF, Machado FA (2010) Coding behavioural data for cladistic analysis: using dynamic homology without parsimony. Cladistics 26:625–642

    Article  Google Scholar 

  • Josephson RK, Malamud JG, Stokes DR (2000) Asynchronous muscle: a primer. J Exp Biol 203:2713–2722

    PubMed  CAS  Google Scholar 

  • Kerkam K, Viney C, Kaplan D, Lombardi S (1991) Liquid crystallinity of natural silk secretions. Nature 349:596–598

    Article  CAS  Google Scholar 

  • Kovoor J (1987) Comparative structure and histochemistry of silk-producing organs in arachnids. In: Nentwig W (ed) Ecophysiology of spiders. Springer, Berlin

    Google Scholar 

  • Kovoor J, Zylberberg L (1972) Histologie et infrastructure de la glande chélicérienne de Scytodes delicatula Sim. (Araneidae, Scytodidae). Ann Sci Nat Zool 14:333–388

    Google Scholar 

  • Kropf C (2013) Hydraulic system of locomotion. In: Nentwig W (ed) Spider ecophysiology. Springer, Heidelberg (this volume)

    Google Scholar 

  • Opell BD, Hendricks ML (2010) The role of granules within viscous capture threads of orb-weaving spiders. J Exp Biol 213:339–346

    Article  PubMed  CAS  Google Scholar 

  • Sahni V, Blackledge TA, Dhinojwala A (2010) Viscoelastic solids explain spider web stickiness. Nat Commun 1:19. doi:10.1038/ncomms1019

    Article  PubMed  Google Scholar 

  • Sensenig AT, Shultz JW (2003) Mechanics of cuticular elastic energy storage in leg joints lacking extensor muscles in arachnids. J Exp Biol 206:771–784

    Article  PubMed  Google Scholar 

  • Suter RB (1999) An aerial lottery: the physics of ballooning in a chaotic atmosphere. J Arachnol 27:281–293

    Google Scholar 

  • Suter RB, Stratton GE (2005) Scytodes vs. Schizocosa: predatory techniques and their morphological correlates. J Arachnol 33:7–15

    Article  Google Scholar 

  • Suter RB, Stratton GE (2009) Spitting performance parameters and their biomechanical implications in Scytodes (Araneae, Scytodidae). J Insect Sci 9:62, http://www.insectscience.org/9.62/

    Article  Google Scholar 

  • Suter RB, Stratton GE (2011) Does allometric growth explain the diminutive size of the fangs of Scytodes (Araneae, Scytodidae)? J Arachnol 39:174–177

    Article  Google Scholar 

  • Syme DA, Josephson RK (2002) How to build fast muscles: synchronous and asynchronous designs. Integr Comp Biol 42:762–770

    Article  PubMed  Google Scholar 

  • Townley MA, Tillinghast E (2013) Aggregate silk gland secretions of araneoid spiders. In: Nentwig W (ed) Spider ecophysiology. Springer, Heidelberg (this volume)

    Google Scholar 

  • Vogel S (2009) Glimpses of creatures in their physical worlds. Princeton University Press, Princeton

    Google Scholar 

  • Vollrath F, Knight DP (2001) Liquid crystalline spinning of spider silk. Nature 410:541–548

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert B. Suter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Suter, R.B., Stratton, G.E. (2013). Predation by Spitting Spiders: Elaborate Venom Gland, Intricate Delivery System. In: Nentwig, W. (eds) Spider Ecophysiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33989-9_18

Download citation

Publish with us

Policies and ethics