Skip to main content

The Neurotoxic Mode of Action of Venoms from the Spider Family Theraphosidae

  • Chapter
  • First Online:
Spider Ecophysiology

Abstract

Spiders from the family Theraphosidae are typically generalist predators of both invertebrates and vertebrates. Due to their large size and popularity in the pet trade, obtaining large amounts of a diverse range of theraphosid venoms is easier than for any other spider family. This explains why ~25 % of all spider toxins described to date originate from theraphosids even though they account for only 2 % of the taxonomic diversity of spiders. The main components of theraphosid venoms are neurotoxic peptides (cysteine-rich mini-proteins) that act on ion channels in the central or peripheral nervous system in order to induce rapid paralysis and/or death of prey. Their venoms also contain toxins that inhibit proteolytic degradation and enzymes that aid in the spread of other venom components. Some compounds in theraphosid venoms cause pain in vertebrates, making them useful for predator deterrence. Most theraphosid venom peptides contain three disulfide bonds that form an inhibitor cystine knot motif, which endows these toxins with extreme chemical and thermal stability, as well as resistance to proteolytic degradation. These properties, as well as their high potency and selectivity for particular molecular targets, have made some theraphosid venom peptides valuable as pharmacological tools and as leads for therapeutics and bioinsecticides.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed N, Pinkham M, Warrell DA (2009) Symptom in search of a toxin: muscle spasms following bites by Old World tarantula spiders (Lampropelma nigerrimum, Pterinochilus murinus, Poecilotheria regalis) with review. Q J Med 102:851–857

    Article  CAS  Google Scholar 

  • Bowman CL, Gottlieb PA, Suchyna TM, Murphy YK, Sachs F (2007) Mechanosensitive ion channels and the peptide inhibitor GsMTx-4: history, properties, mechanisms and pharmacology. Toxicon 49:249–270

    Article  PubMed  CAS  Google Scholar 

  • Escoubas P, Rash L (2004) Tarantulas: eight-legged pharmacists and combinatorial chemists. Toxicon 43:555–574

    Article  PubMed  CAS  Google Scholar 

  • Gracy J, Chiche L (2011) Structure and modeling of knottins, a promising molecular scaffold for drug discovery. Curr Pharm Des 17:4337–4350

    Article  PubMed  CAS  Google Scholar 

  • Herzig V (2010) Update zum DeArGe-Spinnengiftprojekt. Arachne 15:26–31

    Google Scholar 

  • Herzig V, Wood DLA, Newell F, Chaumeil PA, Kaas Q, Binford GJ, Nicholson GM, Gorse D, King GF (2011) ArachnoServer 2.0, an updated online resource for spider toxin sequences and structures. Nucleic Acids Res 39:D653–D657

    Article  PubMed  Google Scholar 

  • Isbister GK, Seymour JE, Gray MR, Raven RJ (2003) Bites by spiders of the family Theraphosidae in humans and canines. Toxicon 41:519–524

    Article  PubMed  CAS  Google Scholar 

  • King GF (2007) Modulation of insect Cav channels by peptidic spider toxins. Toxicon 49:513–530

    Article  PubMed  CAS  Google Scholar 

  • King GF, Escoubas P, Nicholson GM (2008a) Peptide toxins that selectively target insect Nav and Cav channels. Channels 2:100–116

    Article  PubMed  Google Scholar 

  • King GF, Gentz MC, Escoubas P, Nicholson GM (2008b) A rational nomenclature for naming peptide toxins from spiders and other venomous animals. Toxicon 52:264–276

    Article  PubMed  CAS  Google Scholar 

  • Klint JK, Senff S, Rupasinghe DB, Er SY, Herzig V, Nicholson GM, King GF (2012) Spider-venom peptides that target voltage-gated sodium channels: pharmacological tools and potential therapeutic leads. Toxicon 60:478–491. doi:10.1016/j.toxicon.2012.1004.1337

    Google Scholar 

  • Kuhn-Nentwig L, Stoecklin R, Nentwig W (2011) Venom composition and strategies in spiders: is everything possible? Adv Insect Physiol 40:1–86

    Article  Google Scholar 

  • Liang S (2004) An overview of peptide toxins from the venom of the Chinese bird spider Selenocosmia huwena Wang [=Ornithoctonus huwena (Wang)]. Toxicon 43:575–585

    Article  PubMed  CAS  Google Scholar 

  • Lucas SM, Da Silva Junior PI, Bertani R, Cardoso JL (1994) Mygalomorph spider bites: a report on 91 cases in the state of Sao Paulo, Brazil. Toxicon 32:1211–1215

    Article  PubMed  CAS  Google Scholar 

  • Nentwig W, Kuhn-Nentwig L (2013) Main components of spider venoms. In: Nentwig W (ed) Spider ecophysiology. Springer, Heidelberg (this volume)

    Google Scholar 

  • Oldrati V, Bianchi E, Stöcklin R (2013) Spider venom components as drug candidates. In: Nentwig W (ed) Spider ecophysiology. Springer, Heidelberg (this volume)

    Google Scholar 

  • Olivera BM, Cruz LJ (2001) Conotoxins, in retrospect. Toxicon 39:7–14

    Article  PubMed  CAS  Google Scholar 

  • Platnick N (2012) The world spider catalog, Version 13.0. American Museum of Natural History. http://research.amnh.org/entomology/spiders/catalog/index.html. Accessed 26 October 2012

  • Saez NJ, Senff S, Jensen JE, Er SY, Herzig V, Rash LD, King GF (2010) Spider-venom peptides as therapeutics. Toxins 2:2851–2871

    Article  PubMed  CAS  Google Scholar 

  • Siemens J, Zhou S, Piskorowski R, Nikai T, Lumpkin EA, Basbaum AI, King D, Julius D (2006) Spider toxins activate the capsaicin receptor to produce inflammatory pain. Nature 444:208–212

    Article  PubMed  CAS  Google Scholar 

  • Sollod BL, Wilson D, Zhaxybayeva O, Gogarten JP, Drinkwater R, King GF (2005) Were arachnids the first to use combinatorial peptide libraries? Peptides 26:131–139

    Article  PubMed  CAS  Google Scholar 

  • Windley MJ, Herzig V, Dziemborowicz SA, Hardy MC, King GF, Nicholson GM (2012) Spider-venom peptides as bioinsecticides. Toxins 4:191–227

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from the Australian Research Council (Discovery Grant DP1095728) and thank Pierre-Alain Chaumeil from the Queensland Facility for Advanced Bioinformatics for extracting data from ArachnoServer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Glenn F. King .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Herzig, V., King, G.F. (2013). The Neurotoxic Mode of Action of Venoms from the Spider Family Theraphosidae. In: Nentwig, W. (eds) Spider Ecophysiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33989-9_15

Download citation

Publish with us

Policies and ethics