Advertisement

Nonmetric Priors for Continuous Multilabel Optimization

  • Evgeny Strekalovskiy
  • Claudia Nieuwenhuis
  • Daniel Cremers
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7578)

Abstract

We propose a novel convex prior for multilabel optimization which allows to impose arbitrary distances between labels. Only symmetry, d(i,j) ≥ 0 and d(i,i) = 0 are required. In contrast to previous grid based approaches for the nonmetric case, the proposed prior is formulated in the continuous setting avoiding grid artifacts. In particular, the model is easy to implement, provides a convex relaxation for the Mumford-Shah functional and yields comparable or superior results on the MSRC segmentation database comparing to metric or grid based approaches.

Keywords

Distance Function Continuous Setting Convex Relaxation Block Artifact Label Distance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Trans. on Patt. Anal. and Mach. Intell. 23(11), 1222–1239 (2001)CrossRefGoogle Scholar
  2. 2.
    Chambolle, A., Cremers, D., Pock, T.: A convex approach for computing minimal partitions. Technical report TR-2008-05, Dept. of Computer Science, University of Bonn, Bonn, Germany (November 2008)Google Scholar
  3. 3.
    Lellmann, J., Schnörr, C.: Continuous Multiclass Labeling Approaches and Algorithms. SIAM J. Imag. Sci. 4(4), 1049–1096 (2011)zbMATHCrossRefGoogle Scholar
  4. 4.
    Ishikawa, H.: Exact optimization for Markov random fields with convex priors. IEEE Trans. on Patt. Anal. and Mach. Intell. 25(10), 1333–1336 (2003)CrossRefGoogle Scholar
  5. 5.
    Potts, R.B.: Some generalized order-disorder transformations. Proc. Camb. Phil. Soc. 48, 106–109 (1952)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Pock, T., Chambolle, A., Bischof, H., Cremers, D.: A convex relaxation approach for computing minimal partitions. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Miami, Florida (2009)Google Scholar
  7. 7.
    Lellmann, J., Becker, F., Schnörr, C.: Convex optimization for multi-class image labeling with a novel family of total variation based regularizers. In: IEEE Int. Conf. on Computer Vision, pp. 646–653 (2009)Google Scholar
  8. 8.
    Lellmann, J., Breitenreicher, D., Schnörr, C.: Fast and Exact Primal-Dual Iterations for Variational Problems in Computer Vision. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part II. LNCS, vol. 6312, pp. 494–505. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    Chekuri, C., Khanna, S., Naor, J., Zosin, L.: A linear programming formulation and approximation algorithms for the metric labeling problem. SIAM Journal on Discrete Mathematics 18, 608–625 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Bai, X., Sapiro, G.: A geodesic framework for fast interactive image and video segmentation and matting. In: IEEE Int. Conf. on Computer Vision (2007)Google Scholar
  11. 11.
    Ladicky, L., Russell, C., Kohli, P., Torr, P.: Inference methods for crfs with co-occurence statistics. Int. J. of Computer Vision (2010)Google Scholar
  12. 12.
    Attouch, H., Buttazzo, G., Michaille, G.: Variational Analysis in Sobolev and BV Spaces. MPS-SIAM Series on Optimization. SIAM (2006)Google Scholar
  13. 13.
    Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. Journal of Mathematical Imaging and Vision 40(1), 120–145 (2011)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Pock, T., Chambolle, A.: Diagonal preconditioning for first order primal-dual algorithms in convex optimization. In: International Conference on Computer Vision, ICCV 2011 (2011)Google Scholar
  15. 15.
    Alberti, G., Bouchitté, G., Maso, G.D.: The calibration method for the Mumford-Shah functional and free-discontinuity problems. Calculus of Variations and Partial Differential Equations 16(3), 299–333 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Pock, T., Cremers, D., Bischof, H., Chambolle, A.: An algorithm for minimizing the piecewise smooth mumford-shah functional. In: IEEE Int. Conf. on Computer Vision, Kyoto, Japan (2009)Google Scholar
  17. 17.
    Rockafellar, R.T.: Convex Analysis. Princeton University Press (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Evgeny Strekalovskiy
    • 1
  • Claudia Nieuwenhuis
    • 1
  • Daniel Cremers
    • 1
  1. 1.Technical University MunichGermany

Personalised recommendations