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Abstract. We propose a novel convex prior for multilabel optimization
which allows to impose arbitrary distances between labels. Only sym-
metry, d(i, j) ≥ 0 and d(i, i) = 0 are required. In contrast to previous
grid based approaches for the nonmetric case, the proposed prior is for-
mulated in the continuous setting avoiding grid artifacts. In particular,
the model is easy to implement, provides a convex relaxation for the
Mumford-Shah functional and yields comparable or superior results on
the MSRC segmentation database comparing to metric or grid based
approaches.

1 Introduction

1.1 Nonmetric Priors in Image Segmentation

The task of multilabel optimization is to assign a meaningful label to each image
pixel so that the overall labeling minimizes a certain cost. Example problems in-
clude 3D-reconstruction, optical flow and denoising. Another one is segmentation
where the image is to be divided into a set of non-overlapping regions, which are
homogeneous in specific way. Respective algorithms usually define color models
for each object or region, e.g. by estimating probability distributions in the color
space. Adding prior constraints such as minimal boundary or curvature of the
segmented objects, impressive results can be obtained. Yet, for a large number of
objects additional information is indispensable to resolve the ambiguity between
objects of similar or mixed colors. For example, cows, sheep and horses all con-
tain colors of white, black and brown. Depending on the color distributions, this
often leads to mixed animals, having e.g. ’cow’ labeled bodies and ’sheep’ labeled
heads. To avoid such problems, label transitions can be punished depending on
the probability of co-occurrence of two different objects next to each other. This,
however, in general leads to nonmetric arbitrary label distance functions, which
cannot be handled by common algorithms such as α-expansion [1] or primal dual
schemes [2,3], which assume metrical distance functions.

Nonmetric priors are encountered in many practical problems, since triangle
inequality is usually not preserved and infinite distances appear between entirely
unrelated objects. For example, while sheep and tigers are both frequently en-
countered in grass, nevertheless they usually do not appear next to each other.
A challenge which has largely been neglected is to devise algorithms which allow
to impose such nonmetric distance priors into multilabel optimization to be able
to apply any learned co-occurrence relations.
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1.2 Related Work

Multilabel problems are generally solved by minimizing energies of the form

E(u) = Edata(u) + Ereg(u). (1.1)

The data term Edata corresponds to the negative log likelihood for observing the
data given a specific model such as a learned color model, whereas the regularizer
Ereg corresponds to the negative logarithm of some prior stating which label
configurations are apriori more likely. For reasons of invariance to translation
in the label space, priors are typically functions of the distance between label
values assigned to neighboring nodes.

A simple prior is the linear label cost, i.e. for two labels i and j and a constant
c the label distance function can be expressed by d(i, j) = c |i− j|. In the MRF
domain, the corresponding labeling problems can be optimized globally by the
Ishikawa approach [4]. In the continuous setting, this formulation corresponds
to the total variation regularization.

In the case of a metric distance function, in general no globally optimal so-
lutions can be obtained for more than two labels. A popular metric prior is the
Pott’s model [5], which assigns a constant cost to each label change indepen-
dent of the labels. In the MRF domain, algorithms such as α-expansion and
α-β swap [1] were developed to solve the corresponding multilabel problem. In
the continuous setting, to this end convex relaxation schemes were proposed by
Chambolle et al. [2], Pock et al. [6] and Lellmann et al. [3,7,8].

In [7], it was shown how metrical approximations to nonmetric distance func-
tions can be obtained. In practice, however, these approximations can be arbi-
trarily far from the original distance function, e.g. in case of learned distance
functions. Guaranteed integrality gaps between the relaxed and the integer so-
lution for different approximations to the metric labeling problem have been
proven by Chekuri et al. [9].

In the specific field of multilabel segmentation, nonmetric distance functions
have been introduced before. Geodesic distances have been formulated by Bai et
al. [10]. Co-occurrence probabilities, which penalize the simultaneous appearance
of label sets within an image and thus implicitly influence neighboring labels,
have been modeled by Ladicky et al. [11].

Discrete Nonmetric Labeling. Most closely related to our work is the approach
by Chekuri et al. [9] for handling general nonmetric distance functions in the
MRF domain. It is able to handle arbitrary label distance functions

d : {1, . . . , n}2 → R (1.2)

where n ≥ 1 is the number of labels. In particular, neither symmetry nor the
triangle inequality are assumed on the label distances. The distance d(i, j) gives
the penalization if the multilabel assignment changes from label i to label j.
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In the discrete case of MRF energies defined on a graph (V,E), it gives an LP-
relaxation for the general potentials of second order. The regularizer is defined
separately on each edge of the graph and gives a penalization if the labeling
u : V → L := {1, . . . , n} is different on the two endpoints of the edge:

R(u) =
∑

(a,b)∈E

d(u(a), u(b)) . (1.3)

For each label i a label indicator function ui(a) ∈ {0, 1} is introduced, with
ui(a) = 1 if the label i is set in pixel a and ui(a) = 0 otherwise. The regularizer
part of the LP-relaxation in [9] is

R(u) = inf
uij≥0

∑

(a,b)∈E

∑

i,j∈L
d(i, j)uij(a, b) (1.4)

where the new variables uij(a, b) are constrained by

∑

j

uij(a, b) = ui(a) ∀i ∈ L,
∑

i

uij(a, b) = uj(b) ∀j ∈ L.
(1.5)

However, because of the MRF domain the regularizer (1.4) is defined directly on
the underlying pixel grid. Therefore, the interface length between two labels is
measured in the l1 instead of the l2 norm leading to grid bias, i.e. grid aligned
interfaces between labels are favored.

In contrast, in the continuous setting, variational multilabel approaches have
so far been limited to metric distance measures leading to crude approximations
of the actual label distances.

1.3 Contribution

In this paper, we present a novel spatially continuous approach to the multilabel
problem, which allows for arbitrary label distances. We formulate an efficient
primal-dual algorithm and compare results to previous approaches, which are
restricted to metric label distances, on the MSRC segmentation benchmark.

More specifically, our contributions are as follows:

– We propose a novel regularizer for multilabel optimization which can handle
arbitrary explicitly specified label distances.

– The regularizer is spatially continuous and therefore is rotationally invariant,
avoiding the grid bias.

– The model is easy to implement and the results are comparable and often
superior to the metric and grid based approaches.
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2 Continuous Multilabel Optimization with Nonmetric
Priors

The general multilabel problem in image domain Ω ⊂ R
2 with n ≥ 1 labels

consists in finding n label indicator functions u1, . . . , un : Ω → {0, 1}minimizing

inf
u

{
n∑

i=1

∫

Ω

�i(x)ui(x) dx + R(u)

}
(2.1)

under the label-uniqueness constraint
∑n

i=1 ui(x) = 1. Here, �i(x) is the data
term, i.e. the local cost of assigning label i at image point x ∈ Ω, and R(u) a
multilabel regularizer ensuring a spatial consistency of labels.

Ideally, we want the regularizer R(u) to measure the total length of all label
interfaces, weighted by the distances d(i, j) of the corresponding labels i and j
at the two interface sides. In the following, we propose a definition of such a
regularizer and show in Theorem 1 that it indeed satisfies this requirement.

2.1 The Novel Regularizer

We propose the following regularizer:

R(u) = sup
(p,q)∈C

n∑

i=1

∫

Ω

(
pi(x)∇ui(x) + qi(x)ui(x)

)
dx (2.2)

with the convex set

C =
{
(p, q) : Ω → (R2 ×R)n

∣∣ |pj(x)− pi(x)|+ qi(x) ≤ d(i, j) ∀x, i, j
}
. (2.3)

The dual variables consist of n vector fields p1, . . . , pn and n scalars q1, . . . , qn,
corresponding to the n labels u1, . . . , un. The distance d may be arbitrary. In
particular we do not require it to be a metric. As usual, the distance measure
notion implies symmetry, d(i, j) ≥ 0 for all i, j, and d(i, i) = 0 for all i. These
are the only conditions we impose on d.

Since u : Ω → {0, 1}n is in general non-smooth, we write the term pi∇ui only
for convenience, tacitly meaning (− div pi)ui and assuming p to be smooth.

2.2 Motivation for the Definition

Introducing Lagrange multipliers vi(a, b), wj(a, b) ∈ R for the constraints (1.5),
the expression (1.4) can be written as

R(a,b) = sup
v,w

∑

(a,b)∈E

( ∑

i

vi(a, b)ui(a) +
∑

j

wj(a, b)uj(b)

)
(2.4)

with v, w such that

vi(a, b) + wj(a, b) ≤ d(i, j) ∀i, j. (2.5)
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Writing p̂i(a, b) := wi(a, b) and q̂i(a, b) := vi(a, b) + wi(a, b) this becomes

R(a,b) = sup
p̂,q̂

∑

(a,b)∈E

∑

i

(
p̂i(a, b)

(
ui(b)− ui(a)

)
+ q̂i(a, b)ui(a)

)
(2.6)

with the constraints
(
p̂j(a, b)− p̂i(a, b)

)
+ q̂i(a, b) ≤ d(i, j) ∀i, j. (2.7)

This expression is already very similar to the proposed one (2.2). We can replace
the sum over the edges in (2.6) by the sum over each vertex a ∈ V , considering
its right and upper neighbors bh and bv, respectively:

R(a,b) = sup
p̂,q̂

∑

a∈V

∑

i

((
p̂i(a, bh)

p̂i(a, bv)

)(
ui(bh)− ui(a)

ui(bv)− ui(a)

)
+
(
q̂i(a, bh)+q̂i(a, bv)

)
ui(a)

)
.

Note that the vectorial expression in ui can be regarded as the discretization of
the gradient ∇ui at a ∈ V . The crucial step to arrive at (2.2) is now to define

pi(a) :=

(
p̂i(a, bh)

p̂i(a, bv)

)
and qi(a) := q̂i(a, bh) + q̂i(a, bv) (2.8)

and to replace the two constraints (2.7) for b = bh and b = bv by one:

|pj(a)− pi(a)|+ qi(a) ≤ d(i, j) ∀i, j. (2.9)

2.3 Properties of the Regularizer

We prove the following main theorem of the paper. It shows that while the con-
straints (2.9) are not equivalent to (2.7) they give rise to a rotationally invariant
regularizer having the desired penalization properties.

Theorem 1. Let u = eiχA + ejχĀ with a subset A ⊂ Ω and some fixed i, j ∈
{1, . . . , n}. Then

R(u) = d(i, j) Per(A) (2.10)

where Per(A) = TV (χA) is the perimeter of A in Ω.

Proof. See appendix.

In other words, a labeling change from label i to label j will be penalized by
the label distance d(i, j) weighted by the length of the interface between the
regions where these labels are attained. Furthermore, the regularizer R(u) has
the favorable property of being convex, rendering global optimization possible.

Proposition 1. R(u) is convex and lower-semicontinuous on L2(Ω;Rn).

Proof. From (2.2) it follows that R(u) is the support functional

R(u) = sup
z∈D

n∑

i=1

∫

Ω

ui(x) · zi(x) dx (2.11)

of the convex set D = {(− div pi+qi)i=1,...,n

∣∣ (p, q) ∈ C} with the set C in (2.3).
Thus, the theorem follows directly from the properties of support functionals [12,
Theorem 9.1.2].



Nonmetric Priors for Continuous Multilabel Optimization 213

2.4 Special Case: Regularizer for Metrics

For the special case qi(x) ≡ 0, the proposed regularizer reduces to the known
regularizer of [2] for metric distances d, namely

Rm(u) = sup
p∈Cm

n∑

i=1

∫

Ω

pi(x)∇ui(x) dx (2.12)

with the convex set

Cm =
{
p : Ω → (R2)n

∣∣ |pj(x)− pi(x)| ≤ d(i, j) ∀i, j
}
. (2.13)

Note that Rm is still applicable also for nonmetric distances d. In that case, due
to the definition of the set Cm it will implicitly work with a “truncated” version
of d, namely the metric

d̂(i, j) := sup
p∈Rn: |pl−pk|≤d(k,l)∀k,l

|pj − pi|. (2.14)

Lellmann et al. [3] proposed a regularizer in the continuous domain for metric
distances d only, and showed in Proposition 3.1 that d must necessarily be a
metric if the regularizer R satisfies certain simple conditions. Since our proposed
regularizer (2.2) can handle arbitrary nonmetric distances by Theorem 1, it is
interesting to see which of these conditions are not satisfied in our case. It turns
out to be only the second condition (P2) which states that the regularizer must
be zero for any constant u : Ω → R

n. In fact, we have the following result:

Proposition 2. Let u : Ω → R
n be constant, ui(x) = ci for all i and x ∈ Ω

with some c ∈ R
n. Then R(u) = 0 if ci ≥ 0 for all i, and R(u) = ∞ otherwise.

Proof. See appendix.

Because in the optimization we have ui(x) ∈ {0, 1} (respectively ui(x) ∈ [0, 1]
after relaxation) the proposed regularizer is zero for any constant u which rep-
resents a labeling. Thus, dropping the condition (P2) of [3] for non-meaningful
labelings allows us to handle arbitrary distances, and not only the metric ones.

2.5 Convex optimization

The problem (2.1) is not convex because of the nonconvex constraints ui(x) ∈
{0, 1}. To obtain a convex optimization problem, we relax this binary constraint
to ui(x) ∈ [0, 1] for all labels i. Thus, the minimization is performed over the
candidate set

K :=
{
u ∈ L2(Ω;Rn)

∣∣ ui(x) ∈ [0, 1],

n∑

j=1

uj(x) = 1 ∀ i, x ∈ Ω
}

(2.15)

One can easily prove the existence of minimizers for the overall optimization
problem (2.1) for general dataterms � ∈ L2(Ω;Rn).

Theorem 2. The problem (2.1), (2.2) admits a minimizer u ∈ K.

Proof. See appendix.
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3 Implementation

We solve the overall optimization problem (2.1), (2.2) using the general algo-
rithm of [13]. This is a fast primal-dual algorithm which consists essentially in
a gradient descent in u and a gradient ascent in p, with an orthogonal repro-
jection onto the constraint set C in (2.3). The individual constraints of C are
implemented using convex duality. To this end, we add the terms

inf
|aij |≤bij

∑

i,j

∫

Ω

(− aij(pj − pi)− bijqi + bijd(i, j)
)
dx (3.1)

to the energy and optimize the overall problem also in a and b, with no con-
straints on p, q. The simplex constraint

∑
i ui(x) = 1 for each x ∈ Ω is also

implemented using Lagrange multipliers. For this, we replace it by ui(x) ≥ 0
and add the Lagrange multiplier terms

sup
σ

∫

Ω

σ(x)

(
n∑

i=1

ui(x) − 1

)
dx (3.2)

to the energy and optimize over σ : Ω → R. In comparison to the direct pro-
jection, this leads to significantly faster updates per iteration, requiring only
slightly more overall iterations. The time steps for the algorithm are chosen
automatically using the recent preconditioning scheme [14]. We used the same
algorithm [13] to implement the discrete model [9].

4 Experiments

We used 5000 iterations for each experiment after which the solutions become
visually stable. We used a parallel CUDA implementation on NVIDIA GTX 480.
Usual runtimes for 320 × 240 images and 21 labels are around 70 seconds. We
observed that the computed relaxed solutions u are binary almost everywhere
except at region boundaries, with more of less sharp transitions. We binarize the
result at each pixel x by taking the label i with the maximal value ui(x).

4.1 Piecewise Smooth Mumford-Shah Functional

First we demonstrate the application of our approach on the celebrated Mumford-
Shah functional [15,16]. In the continuous domain it is given by

E(u,K) =

∫

Ω

(u− f)2 dx + α

∫

Ω\K
|∇u|2 dx + ν |K| (4.1)

Given a possibly noisy input image f : Ω → R this yields piecewise smooth
approximations u : Ω → R of f . The function u will be smooth, except possibly
for a one-dimensional edge set K where jumps occur. The parameter ν controls
the length of the jump set K. Bigger values of ν lead to a smaller jump set, i.e.
the solution will be smooth on wider subregions of Ω.
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Input discrete [9] continuous [16]
proposed,

same as with [16]

Fig. 1. Piecewise smooth approximations. Although [9] can handle the nonmetric
label distance function induces by the Mumford-Shah functional, it favors grid aligned
edges producing block artifacts. In contrast, the proposed approach is based in the
continuous setting and produces results visually indistinguishable from [16]. While the
nonmetric is implicit in [16], we can specify any nonmetric in a direct way.

Discretizing the range [0, 1] of u into n labels, this leads to a multilabel prob-
lem with the well-known truncated quadratic label distances:

dMS(i, j) = min
(
ν, α

(
i−j
n

)2) ∀ 1 ≤ i, j ≤ n. (4.2)

This distance function is a not metric for ν > 2α
n2 . For example,

dMS(0, 2) = min(ν, 4αn2 ) > 2min(ν, α
n2 ) = dMS(0, 1) + dMS(1, 2). (4.3)

Therefore, our approach applies naturally here. Some results for different pa-
rameters ν and α are shown in Figure 1. As expected, our approach produces
visually the same results as Pock et al. [16] (handles exclusively the Mumford-
Shah model) since both work in the continuous setting. While their approach
uses advanced tools such as functional lifting to arrive at the convex relaxation,
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Noisy input
exact distances,

proposed

metric approx.
(2.12)

truncated linear
metric [2]

Fig. 2. Nonmetric versus metric approaches. From left to right: A noisy input im-
age. Piecewise smooth approximation using our approach by specifying the nonmetric
Mumford-Shah label distances. Ignoring the nonmetric character of the distance func-
tion and treating it as a metric by (2.12) effectively imposes a “truncated linear” metric,
which leads to staircasing effects. This is further confirmed by solving for this metric
explicitly using [2].

the proposed approach is more basic as it specifies the label distances explicitly.
The discrete grid based approach [9] can also handle the nonmetric distance
(4.2) but measures the interface length in the l1 norm. As seen in Fig. 1, our
model evidently visually improves over [9], eliminating its block artifacts.

The experiment in Figure 2 shows the importance of the ability of the proposed
approach to handle nonmetric distances exactly. Trying to solve the Mumford-
Shah problem using the metric approximation (2.12) effectively imposes the
truncated linear prior instead of truncated quadratic, which leads to staircasing
effects. In fact, one easily show that the truncated metric in (2.14) is

d̂MS(i, j) = min
(
ν, α |i−j|

n2

)
. (4.4)

4.2 MSRC Segmentation Benchmark

To evaluate the proposed segmentation algorithm we apply it to the task of ob-
ject segmentation and recognition on theMSRCbenchmark.This benchmark com-
prises around600 imageswhich contain 23 different labels such as cow, book, build-
ing or grass.To conduct experiments on this benchmark,we followLadicky et al. [11]
and divide the image set randomly into 60% training images and 40% test images.

The label distance matrix is learned on the training set. For each pair of labels
(i, j), i < j we compute the relative frequency that i and j are neighbors in the
following way. Let Aij and Bij denote the number of pairs of pixels where labels
i and j are direct or diagonal neighbors, respectively:

Aij := #{(x, y) ∈ Ω ×Ω
∣∣ l(x) = i, l(y) = j, ‖x− y‖2 = 1},

Bij := #{(x, y) ∈ Ω ×Ω
∣∣ l(x) = i, l(y) = j, ‖x− y‖2 =

√
2 }. (4.5)
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Fig. 3. Label distance matrix for the MSRC database in Section 4.2. The
distance function is estimated on the training set and is an example of a nonmetric.
The first row and column are the color coded labels and the other entries depict the
values d(i, j) with 0 as black and 10 as white.

Then the label distance is calculated as the negative logarithm of the relative
weighted frequency:

d(i, j) = − log
Aij +

Bij√
2∑

k

(
Aik + Bik√

2

) . (4.6)

For non-adjacent labels i, j with |A| = |B| = 0, we truncate d(i, j) = ∞ to
d(i, j) = M for some M > 0 (e.g. 10). Figure 3 indicates the distance function
obtained from the MSRC training set. The brightness of the entry corresponds
to the distance of the coinciding labels.

To evaluate the segmentation accuracy of the proposed method, we compare
the scores and the overall accuracies for the following approaches:

– the proposed nonmetric regularization (2.2),
– the ”truncation to metric” regularization (2.12),
– the discrete l1 nonmetric regularization (1.4),
– the co-occurrence statistics based approach by Ladicky et al. [11].

Nonmetric regularization means the approach proposed in this paper, which can
handle arbitrary distance functions. Truncation to metric means that the learned
distance function d is approximated by the closest metrical distance function in
the continuous domain. The l1 nonmetric regularization penalizes distances in
horizontal and vertical direction separately leading to a direction dependent
distance function. In the discrete case, this formulation corresponds to Chekuri
et al. [9]. Finally, we compare the obtained benchmark results to those reported
by Ladicky et al. [11]. In contrast to the proposed method which defines distance
based on neighboring pixel labels (second order potentials), the authors of [11]
use information on the general co-occurrence of two labels in one image to derive
label distances (potentials of the highest order |Ω|).

Results for the different approaches are shown in Figure 4. A quantitative
comparison for each label as well as the overall accuracies can be seen in Table 1.



218 E. Strekalovskiy, C. Nieuwenhuis, and D. Cremers

Input Metric (2.12) Discrete [9] Ladicky et al. Proposed

Fig. 4. Results on the MSRC segmentation benchmark. From left to right:
Input image, segmentation by (2.12) truncating the label distance to the nearest met-
ric, segmentation using the grid based approach (1.4), segmentation using the proposed
regularizer (2.2). The regularizer weighting is optimized separately for each approach.

Table 1. Segmentation accuracies for the different approaches. The scores for
each label are defined as True Positives

True Positives+ False Negatives
. Also shown is the average over the

scores and the accuracy for each approach, i.e. the overall number of pixels labeled
correctly as in the ground truth, divided by the overall number of pixels. The proposed
continuous nonmetric approach provides the best overall accuracy. Results of [11] are
only for comparison, since they use potentials of the highest order |Ω|, instead of order
two as in our approach.
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We set the regularizer weighting to ν = 0.2 for every image in the database. The
proposed approach leads to best overall accuracies comparing with the metric
and grid based approaches.

5 Conclusion

For the multilabel optimization problem we introduced a novel regularizer which
can handle arbitrary label distances. In contrast to previous discrete approaches,
it is based in the continuous setting and does not suffer from metrical artifacts.
Being convex it allows to find globally optimal solutions of the relaxation. The
proposed model leads to consistently better results than the discrete model. Ex-
perimental results show competitiveness to state-of-the-art discrete approaches.
On the MSRC segmentation database we get higher overall accuracy, and the
Mumford-Shah experiments evidently show visual improvements over the dis-
crete model, eliminating its block artifacts. Future applications, with a more
distinct nonmetric structure of the distance functions based on our approach
may lead to substantial improvements.
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3. Lellmann, J., Schnörr, C.: Continuous Multiclass Labeling Approaches and Algo-
rithms. SIAM J. Imag. Sci. 4(4), 1049–1096 (2011)

4. Ishikawa, H.: Exact optimization for Markov random fields with convex priors.
IEEE Trans. on Patt. Anal. and Mach. Intell. 25(10), 1333–1336 (2003)

5. Potts, R.B.: Some generalized order-disorder transformations. Proc. Camb. Phil.
Soc. 48, 106–109 (1952)

6. Pock, T., Chambolle, A., Bischof, H., Cremers, D.: A convex relaxation approach
for computing minimal partitions. In: IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), Miami, Florida (2009)
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A Appendix

Proof (Theorem 1). We have, using the divergence theorem,

R(u) =

∫

A

(− div pi + qi) dx +

∫

Ā

(− div pj + qj) dx

=

∫

∂A

(−pi) ν∂A dH1 +

∫

∂Ā

(−pj) ν∂Ā dH1 +

∫

A

qi dx+

∫

Ā

qj dx

=

∫

∂A

(pj − pi) ν∂A dH1 +

∫

A

qi dx+

∫

Ā

qj dx (A.1)

≤
∫

∂A

(pj − pi) ν∂A dH1 +

∫

A

qi dx.

For the last inequality we used qj ≤ 0, which follows from (2.3) by setting i = j.
Using the constraints in (2.3), from this we obtain

R(u) ≤
∫

∂A

(d(i, j)− qi) dH1 +

∫

A

qi dx

= d(i, j) Per(A) +

∫

A

qi dx−
∫

∂A

qi dH1.

(A.2)

Observe that in the discretized setting it holds
∫

∂A

qi dH1 =

∫

A1

qi dx (A.3)

where A1 := {x ∈ A | dist(x, ∂A) ≤ 1} are the points in A near its boundary.
Hence, we have

∫

A

qi dx−
∫

∂A

qi dH1 =

∫

A\A1

qi dx ≤ 0 (A.4)
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and it follows R(u) ≤ d(i, j) Per(A). It is also possible to show the equality here,
i.e. that the supremum over p and q is reached. However, this requires a rather
technical argument.

Proof (Theorem 2). The minimization of the overall functional (2.1) with the
constraint u ∈ K can be rewritten as unconstrained minimization of

E(u) =
n∑

i=1

∫

Ω

�i(x)ui(x) dx + R(u) + δK(u), (A.5)

over the space V := L2(Ω;Rn), where the indicator function δK(u) is defined as
0 for u ∈ K, and ∞ otherwise [17]. For � ∈ V , the first term is a linear bounded
function in u, and therefore convex and lower-semicontinuous on V . Also, δK
is convex, coercive (since K is bounded), and lower-semicontinuous (since K is
closed).

Together with Proposition 1 and R(u) ≥ 0 (choose (p, q) ≡ 0 in (2.2)), we
conclude that the overall energy E is convex, lower-semicontinuous and coercive
on V . By [12, Theorem 3.3.3] E is then also weakly lower-semicontinuous and
coercive. Existence of minimizers in V (which necessarily must lie in K ⊂ V
because of the delta function), now follows from [12, Theorem 3.2.5].

Proof (Proposition 2). Since the constant function u has zero gradient, the rep-
resentation (2.2) of R reduces to

R(u) = sup
(p,q)∈C

n∑

i=1

ci

∫

Ω

qi(x) dx. (A.6)

with the set C in (2.3).
First, assume that ci ≥ 0 for all i. We can then ”pull out” the constants ci

out of the supremum in (2.2). The constraints in C for i = j specifically yield
qi(x) ≤ 0 for all i and x. This way we get R(u) ≤ 0. By choosing p, q ≡ 0 we
also obtain R(u) ≥ 0, so that overall R(u) = 0.

Assume now that ci0 < 0 for some i0. Choosing p ≡ 0, qi(x) := 0 for i 
= i0
and qi0(x) := M with any M ≤ 0, we obviously have (p, q) ∈ C. Therefore,
R(u) ≥ supM≤0 ci0M |Ω| = ∞.
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