Skip to main content

Transforming the Domain Structure of Botulinum Neurotoxins into Novel Therapeutics

  • Chapter
  • First Online:
Botulinum Neurotoxins

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 364))

Abstract

Botulinum neurotoxins are comprised of multiple identifiable protein domains. Recent advances in understanding the relationships between domain structure and neurotoxin function have provided a number of opportunities to engineer innovative therapeutic proteins that utilise the neurotoxins and neurotoxin domains. For example, recent insights into the properties of the catalytic, translocation and binding domains open up opportunities to develop botulinum neurotoxins with enhanced properties of selectivity, potency and duration of action. In parallel, the broad scope for utilisation of the individual domains is becoming clearer as significant advancements are made to exploit the unique biology of the catalytic and translocation domains. These opportunities and the status of their development will be reviewed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BoNT:

Botulinum neurotoxin

HC:

Heavy chain of BoNT

HC :

C-terminal domain of the Heavy chain of BoNT

HCC :

C-terminal sub-domain of the HC

HN :

N-terminal domain of the heavy chain of BoNT

LC:

Light chain domain of BoNT

LHN :

Fragment of BoNT comprising the LC and HN domains

LHN/C1 :

Fragment of BoNT comprising the LC and HN domains of BoNT/C1

SNAP-25:

Synaptosomal-associated protein of 25 kDa

SNARE:

Soluble N-ethylmaleimide–sensitive factor attachment protein receptor

SV2:

Synaptic vesicle glycoprotein 2

TeNT:

Tetanus neurotoxin

TSI:

Targeted secretion inhibitors

VAMP:

Vesicle associated membrane protein

References

  • Arndt JW, Jacobson MJ, Abola EE, Forsyth CM, Tepp WH, Marks JD, Johnson EA, Stevens RC (2006) A structural perspective of the sequence variability within botulinum neurotoxin subtypes A1–A4. J Mol Biol 362:733–742

    Article  PubMed  CAS  Google Scholar 

  • Bade S, Rummel A, Reisinger C, Karnath T, Ahnert-Hilger G, Bigalke H, Binz T (2004) Botulinum neurotoxin type D enables cytosolic delivery of enzymatically active cargo proteins to neurones via unfolded translocation intermediates. J Neurochem 91(6):1461–1472

    Article  PubMed  CAS  Google Scholar 

  • Box M, Parks DA, Knight A, Hale C, Fishman PS, Fairweather NF (2003) A multi-domain protein system based on the HC fragment of tetanus toxin for targeting DNA to neuronal cells. J Drug Target 11(6):333–343

    Article  PubMed  CAS  Google Scholar 

  • Carter AT, Paul CJ, Mason DR, Twine SM, Alston MJ, Logan SM, Austin JW, Peck MW (2009) Independent evolution of neurotoxin and flagellar genetic loci in proteolytic Clostridium botulinum. BMC Genomics 10:115

    Article  PubMed  Google Scholar 

  • Chaddock JA, Purkiss JR, Duggan MJ, Quinn CP, Shone CC, Foster KA (2000a) A conjugate composed of nerve growth factor coupled to a non-toxic derivative of Clostridium botulinum neurotoxin type A can inhibit neurotransmitter release in vitro. Growth Factors 18(2):147–155

    Article  PubMed  CAS  Google Scholar 

  • Chaddock JA, Purkiss JR, Friis LM, Broadbridge JD, Duggan MJ, Fooks SJ, Shone CC, Quinn CP, Foster KA (2000b) Inhibition of vesicular secretion in both neuronal and nonneuronal cells by a retargeted endopeptidase derivative of Clostridium botulinum neurotoxin type A. Infect Immun 68(5):2587–2593

    Article  PubMed  CAS  Google Scholar 

  • Chaddock JA, Herbert MH, Ling RJ, Alexander FCG, Fooks SJ, Revell DF, Quinn CP, Shone CC, Foster Ka (2002) Expression and purification of catalytically active, non-toxic endopeptidase derivatives of Clostridium botulinum toxin type A. Protein Expr Purif 25:219–228

    Article  PubMed  CAS  Google Scholar 

  • Chaddock JA, Purkiss JR, Alexander FC, Doward S, Fooks SJ, Friis LM, Hall YH, Kirby ER, Leeds N, Moulsdale HJ, Dickenson A, Green GM, Rahman W, Suzuki R, Duggan MJ, Quinn CP, Shone CC, Foster KA (2004) Retargeted clostridial endopeptidases: inhibition of nociceptive neurotransmitter release in vitro, and antinociceptive activity in in vivo models of pain. Mov Disord 19(Suppl 8):S42–S47

    Article  PubMed  Google Scholar 

  • Chen S, Barbieri JT (2009) Engineering botulinum neurotoxin to extend therapeutic intervention. Proc Natl Acad Sci USA 106(23):9180–9184

    Article  PubMed  CAS  Google Scholar 

  • Darios F, Niranjan D, Ferrari E, Zhang F, Soloviev M, Rummel A, Bigalke H, Suckling J, Ushkaryov Y, Naumenko N, Shakirzyanova A, Giniatullin R, Maywood E, Hastings M, Binz T, Davletov B (2010) SNARE tagging allows stepwise assembly of a multimodular medicinal toxin. Proc Natl Acad Sci USA 107(42):18197–18201

    Article  PubMed  CAS  Google Scholar 

  • Dolly JO, Wang J, Zurawski TH, Meng J (2011) Novel therapeutics based on recombinant botulinum neurotoxins to normalize the release of transmitters and pain mediators. FEBS J 278(23):4454–4466

    Article  PubMed  CAS  Google Scholar 

  • Drachman DB, Adams RN, Balasubramanian U, Lu Y (2010) Strategy for treating motor neuron diseases using a fusion protein of botulinum toxin binding domain and streptavidin for viral vector access: work in progress. Toxins (Basel) 2(12):2872–2889

    CAS  Google Scholar 

  • Duggan MJ, Quinn CP, Chaddock JA, Purkiss JR, Alexander FC, Doward S, Fooks SJ, Friis LM, Hall YH, Kirby ER, Leeds N, Moulsdale HJ, Dickenson A, Green GM, Rahman W, Suzuki R, Shone CC, Foster KA (2002) Inhibition of release of neurotransmitters from rat dorsal root ganglia by a novel conjugate of a Clostridium botulinum toxin A endopeptidase fragment and Erythrina cristagalli lectin. J Biol Chem 277(38):34846–34852

    Article  PubMed  CAS  Google Scholar 

  • Ferrari E, Maywood ES, Restani L, Caleo M, Pirazzini M, Rossetto O, Hastings MH, Niranjan D, Schiavo G, Davletov B (2011) Re-assembled botulinum neurotoxin inhibits CNS functions without systemic toxicity. Toxins (Basel) 3(4):345–355

    CAS  Google Scholar 

  • Foster KA, Chaddock JA (2010) Targeted secretion inhibitors—innovative protein therapeutics. Toxins 2(12):2795–2815

    Article  CAS  Google Scholar 

  • Foster KA, Adams EJ, Durose L, Cruttwell CJ, Marks E, Shone CC, Chaddock JA, Cox CL, Heaton C, Sutton JM, Wayne J, Alexander FC, Rogers DF (2006) Re-engineering the target specificity of Clostridial neurotoxins—a route to novel therapeutics. Neurotox Res 9(2–3):101–107

    PubMed  CAS  Google Scholar 

  • Henkel JS, Jacobson M, Tepp W, Pier C, Ea Johnson, Barbieri JT (2009) Catalytic properties of botulinum neurotoxin subtypes A3 and A4. Biochemistry 48:2522–2528

    Article  PubMed  CAS  Google Scholar 

  • Hill KK, Smith TJ, Helma CH, Ticknor LO, Foley BT, Svensson RT, Brown JL, Johnson EA, Smith LA, Okinaka RT, Jackson PJ, Marks JD (2007) Genetic diversity among botulinum neurotoxin-producing clostridial strains. J Bacteriol 189(3):818–832

    Article  PubMed  CAS  Google Scholar 

  • Jin R, Sikorra S, Stegmann CM, Pich A, Binz T, Brunger AT (2007) Structural and biochemical studies of botulinum neurotoxin serotype C1 light chain protease: implications for dual substrate specificity. Biochemistry 46(37):10685–10693

    Article  PubMed  CAS  Google Scholar 

  • Kumaran D, Eswaramoorthy S, Furey W, Navaza J, Sax M, Swaminathan S (2009) Domain organization in Clostridium botulinum neurotoxin type E is unique: its implication in faster translocation. J Mol Bio 386(1): 233–245

    Google Scholar 

  • Kuo CL, Oyler GA, Shoemaker CB (2011) Accelerated neuronal cell recovery from botulinum neurotoxin intoxication by targeted ubiquitination. PLoS One 6(5):e20352

    Article  PubMed  CAS  Google Scholar 

  • Lacy DB, Tepp W, Cohen AC, DasGupta BR, Stevens RC (1998) Crystal structure of botulinum neurotoxin type A and implications for toxicity. Nat Struct Biol 5(10):898–902

    Article  PubMed  CAS  Google Scholar 

  • Masuyer G, Thiyagarajan N, James PL, Marks PM, Chaddock JA, Acharya KR (2009) Crystal structure of a catalytically active, non-toxic endopeptidase derivative of Clostridium botulinum toxin A. Biochem Biophys Res Commun 381(1):50–53

    Article  PubMed  CAS  Google Scholar 

  • Masuyer G, Beard M, Cadd VA, Chaddock JA, Acharya KR (2011a) Structure and activity of a functional derivative of Clostridium botulinum neurotoxin B. J Struct Biol 174(1):52–57

    Article  PubMed  CAS  Google Scholar 

  • Masuyer G, Stancombe P, Chaddock JA, Acharya KR (2011b) Structures of engineered Clostridium botulinum neurotoxin derivatives. Acta Crystallogr, Sect F: Struct Biol Cryst Commun 67(Pt 12):1466–1472

    Article  Google Scholar 

  • Peng L, Berntsson RP, Tepp WH, Pitkin RM, Johnson EA, Stenmark P, Dong M (2012) Botulinum neurotoxin D-C uses synaptotagmin I/II as receptors and human synaptotagmin II is not an effective receptor for type B, D-C, and G toxins. J Cell Sci 125(13): 3233–3245

    Google Scholar 

  • Pickett A, Perrow K (2011) Towards new uses of botulinum toxin as a novel therapeutic tool. Toxins 3:63–81

    Article  PubMed  CAS  Google Scholar 

  • Pier CL, Chen C, Tepp WH, Lin G, Janda KD, Barbieri JT, Pellett S, Johnson EA (2011) Botulinum neurotoxin subtype A2 enters neuronal cells faster than subtype A1. FEBS Lett 585(1):199–206

    Article  PubMed  CAS  Google Scholar 

  • Rummel A, Mahrhold S, Bigalke H, Binz T (2004) The HCC-domain of botulinum neurotoxins A and B exhibits a singular ganglioside binding site displaying serotype specific carbohydrate interaction. Mol Microbiol 51(3):631–643

    Article  PubMed  CAS  Google Scholar 

  • Rummel A, Mahrhold S, Bigalke H, Binz T (2011) Exchange of the H(CC) domain mediating the double receptor recognition improves the pharmacodynamic properties of botulinum neurotoxin. FEBS J 278(23):4506–4515

    Article  PubMed  CAS  Google Scholar 

  • Scott AB (1980) Botulinum toxin injection into extraocular muscles as an alternative to strabismus surgery. J Pediatr Ophthalmol Strabismus 17(1):21–25

    PubMed  CAS  Google Scholar 

  • Somm E, Martinez A, Marks P, Toulotte A, Bonnet N, Ferrari S, Huppi P, Jones R, Aubert M (2011) SXN101742, a botulinum toxin-derived targeted secretion inhibitor (TSI) inhibits GH synthesis and secretion: a new concept for the management of acromegaly. Endocr Rev 32:P1–P413

    Article  Google Scholar 

  • Strotmeier J, Gu S, Jutzi S, Mahrhold S, Zhou J, Pich A, Eichner T, Bigalke H, Rummel A, Jin R, Binz T (2011) The biological activity of botulinum neurotoxin type C is dependent upon novel types of ganglioside binding sites. Mol Microbiol 81(1):143–156

    Article  PubMed  CAS  Google Scholar 

  • Strotmeier J, Willjes G, Binz T, Rummel A (2012) Human synaptotagmin-II is not a high affinity receptor for botulinum neurotoxin B and G: increased therapeutic dosage and immunogenicity. FEBS Lett 586(4):310–313

    Article  PubMed  CAS  Google Scholar 

  • Sutton JM, Wayne J, Scott-tucker A, Brien SMO, Marks PMH, Alexander FCG, Shone CC, Chaddock JA (2005) Preparation of specifcally activatable endopeptidase derivatives of Clostridium botulinum toxins type A, B, and C and their applications. Protein Expr Purif 40:31–41

    Article  PubMed  CAS  Google Scholar 

  • Swaminathan S, Eswaramoorthy S (2000) Crystallization and preliminary X-ray analysis of Clostridium botulinum neurotoxin type B. Acta Crystallogr D Biol Crystallogr 56(Pt 8):1024–1026

    Article  PubMed  CAS  Google Scholar 

  • Tsai YC, Maditz R, Kuo CL, Fishman PS, Shoemaker CB, Oyler GA, Weissman AM (2010) Targeting botulinum neurotoxin persistence by the ubiquitin-proteasome system. Proc Natl Acad Sci USA 107(38):16554–16559

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Meng J, Lawrence GW, Zurawski TH, Sasse A, Bodeker MO, Gilmore MA, Fernandez-Salas E, Francis J, Steward LE, Aoki KR, Dolly JO (2008) Novel chimeras of botulinum neurotoxins A and E unveil contributions from the binding, translocation, and protease domains to their functional characteristics. J Biol Chem 283(25):16993–17002

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Zurawski TH, Meng J, Lawrence G, Olango WM, Finn DP, Wheeler L, Dolly JO (2011) A dileucine in the protease of botulinum toxin A underlies its long-lived neuroparalysis: transfer of longevity to a novel potential therapeutic. J Biol Chem 286(8):6375–6385

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Zurawski TH, Bodeker M, Meng J, Boddul S, Aoki KR, Dolly JO (2012) Longer-acting and highly-potent chimeric inhibitors of excessive exocytosis created with domains from botulinum neurotoxin A and B. Biochem J 444(1): 59–67

    Google Scholar 

  • Weller U, Dauzenroth ME, Gansel M, Dreyer F (1991) Cooperative action of the light chain of tetanus toxin and the heavy chain of botulinum toxin type A on the transmitter release of mammalian motor endplates. Neurosci Lett 122(1):132–134

    Article  PubMed  CAS  Google Scholar 

  • Yeh FL, Zhu Y, Tepp WH, Johnson EA, Bertics PJ, Chapman ER (2011) Retargeted clostridial neurotoxins as novel agents for treating chronic diseases. Biochemistry 50(48):10419–10421

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Chaddock .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chaddock, J. (2012). Transforming the Domain Structure of Botulinum Neurotoxins into Novel Therapeutics. In: Rummel, A., Binz, T. (eds) Botulinum Neurotoxins. Current Topics in Microbiology and Immunology, vol 364. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33570-9_13

Download citation

Publish with us

Policies and ethics