Skip to main content

Genetic Diversity Within Clostridium botulinum Serotypes, Botulinum Neurotoxin Gene Clusters and Toxin Subtypes

  • Chapter
  • First Online:
Botulinum Neurotoxins

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 364))

Abstract

Clostridium botulinum is a species of spore-forming anaerobic bacteria defined by the expression of any one or two of seven serologically distinct botulinum neurotoxins (BoNTs) designated BoNT/A-G. This Gram-positive bacterium was first identified in 1897 and since then the paralyzing and lethal effects of its toxin have resulted in the recognition of different forms of the intoxication known as food-borne, infant, or wound botulism. Early microbiological and biochemical characterization of C. botulinum isolates revealed that the bacteria within the species had different characteristics and expressed different toxin types. To organize the variable bacterial traits within the species, Group I–IV designations were created. Interestingly, it was observed that isolates within different Groups could express the same toxin type and conversely a single Group could express different toxin types. This discordant phylogeny between the toxin and the host bacteria indicated that horizontal gene transfer of the toxin was responsible for the variation observed within the species. The recent availability of multiple C. botulinum genomic sequences has offered the ability to bioinformatically analyze the locations of the bont genes, the composition of their toxin gene clusters, and the genes flanking these regions to understand their variation. Comparison of the genomic sequences representing multiple serotypes indicates that the bont genes are not in random locations. Instead the analyses revealed specific regions where the toxin genes occur within the genomes representing serotype A, B, C, E, and F C. botulinum strains and C. butyricum type E strains. The genomic analyses have provided evidence of horizontal gene transfer, site-specific insertion, and recombination events. These events have contributed to the variation observed among the neurotoxins, the toxin gene clusters and the bacteria that contain them, and has supported the historical microbiological, and biochemical characterization of the Group classification within the species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BoNT:

Botulinum neurotoxin

HA:

Hemagglutinin

NTNHA:

Non-toxic nonhemagglutinin

orf:

Open reading frame

bp:

Base pair

kb:

Kilobase

Mb:

Megabase

IS elements:

Insertion sequence elements

References

  • Arndt JW, Jacobson MJ, Abola EE, Forsyth CM, Tepp WH, Marks JD, Johnson EA, Stevens RC (2006) A structural perspective of the sequence variability within botulinum neurotoxin subtypes A1–A4. J Mol Biol 362(4):733–742

    Article  PubMed  CAS  Google Scholar 

  • Aureli P, Fenicia L, Pasolini B, Gianfranceschi M, McCroskey LM, Hatheway CL (1986) Two cases of type E infant botulism caused by neurotoxigenic Clostridium butyricum in Italy. J Infect Dis 154(2):207–211

    Article  PubMed  CAS  Google Scholar 

  • Bengtson IA (1922) Preliminary note on a toxin-producing anaerobe isolated from larvae of the green fly. Pub Health Rpts (US) 37:2252–2256

    Article  Google Scholar 

  • Burke GS (1919) Notes on Bacillus botulinus. J Bacteriol 4:555–565

    PubMed  CAS  Google Scholar 

  • Carter AT, Paul CJ, Mason DR, Twine SM, Alston MJ, Logan SM, Austin JW, Peck MW (2009) Independent evolution of neurotoxin and flagellar genetic loci in proteolytic Clostridium botulinum. BMC Genomics 10:115

    Article  PubMed  Google Scholar 

  • Carter AT, Mason DR, Grant KA, Franciosa G, Aureli P, Peck MW (2010) Further characterization of proteolytic Clostridium botulinum type A5 reveals that neurotoxin formation is unaffected by loss of the cntR (botR) promoter sigma factor binding site. J Clin Microbiol 48 (3):1012–1013. doi:JCM.01774-09 [pii]

    Google Scholar 

  • Carter AT, Pearson BM, Crossman LC, Drou N, Heavens D, Baker D, Febrer M, Caccamo M, Grant KA, Peck MW (2011) Complete genome sequence of proteolytic Clostridium botulinum type A5 (B3’) strain H04402 065. J Bacteriol 139(9):2351–2352

    Article  Google Scholar 

  • Chen Y, Korkeala H, Aarnikunnas J, Lindstrom M (2007) Sequencing the botulinum neurotoxin gene and related genes in Clostridium botulinum type E strains reveals orfx3 and a novel type E neurotoxin subtype. J Bacteriol 189(23):8643–8650

    Article  PubMed  CAS  Google Scholar 

  • Dover N, Barash JR, Arnon SS (2009) Novel Clostridium botulinum toxin gene arrangement with subtype A5 and partial subtype B3 botulinum neurotoxin genes. J Clin Microbiol 47(7):2349–2350

    Article  PubMed  CAS  Google Scholar 

  • Dover N, Barash JR, Hill KK, Detter JC, Arnon SS (2011) Novel structural elements within the non-proteolytic Clostridium botulinum type F toxin gene cluster. Appl Environ Microbiol 77(5):1904–1906

    Article  PubMed  CAS  Google Scholar 

  • East AK, Bhandari M, Stacey JM, Campbell KD, Collins MD (1996) Organization and phylogenetic interrelationships of genes encoding components of the botulinum toxin complex in proteolytic Clostridium botulinum types A, B, and F: evidence of chimeric sequences in the gene encoding the non-toxic nonhemagglutinin component. Int J Syst Bacteriol 46(4):1105–1112

    Article  PubMed  CAS  Google Scholar 

  • Eklund MW, Poysky FT, Mseitif LM, Strom MS (1988) Evidence for plasmid-mediated toxin and bacteriocin production in Clostridium botulinum type G. Appl Environ Microbiol 54(6):1405–1408

    PubMed  CAS  Google Scholar 

  • Franciosa G, Ferreira JL, Hatheway CL (1994) Detection of type A, B, and E botulism neurotoxin genes in Clostridium botulinum and other Clostridium species by PCR: evidence of unexpressed type B toxin genes in type A toxigenic organisms. J Clin Microbiol 32(8):1911–1917

    PubMed  CAS  Google Scholar 

  • Franciosa G, Maugliani A, Scalfaro C, Aureli P (2009) Evidence that plasmid-borne botulinum neurotoxin type B genes are widespread among Clostridium botulinum serotype B strains. PLoS ONE 4(3):e4829

    Article  PubMed  Google Scholar 

  • Gimenez DF, Ciccarelli AS (1970a) Another type of Clostridium botulinum. Zentralbl Bakteriol Orig 215(2):221–224

    PubMed  CAS  Google Scholar 

  • Gimenez DF, Ciccarelli AS (1970b) Studies on strain 84 of Clostridium botulinum. Zentralbl Bakteriol Orig 215(2):212–220

    PubMed  CAS  Google Scholar 

  • Gupta A, Sumner CJ, Castor M, Maslanka S, Sobel J (2005) Adult botulism type F in the United States, 1981–2002. Neurology 65(11):1694–1700

    Article  PubMed  CAS  Google Scholar 

  • Hall JD, McCroskey LM, Pincomb BJ, Hatheway CL (1985) Isolation of an organism resembling Clostridium baratii which produces type F botulinal toxin from an infant with botulism. J Clin Microbiol 21(4):654–655

    PubMed  CAS  Google Scholar 

  • Hatheway CL (1988) Botulism. In: Balows A, Hausler WHJ, Ohashi M, Turano A (eds) Laboratory diagnosis of infectious diseases: principles and practice, vol 1. Springer, New York

    Google Scholar 

  • Hazen EL (1937) A strain of B. botulinus not classified as type A, B, or C. J Infect Dis 60(3):260–264

    Article  Google Scholar 

  • Hielm S, Bjorkroth J, Hyytia E, Korkeala H (1998) Genomic analysis of Clostridium botulinum group II by pulsed-field gel electrophoresis. Appl Environ Microbiol 64(2):703–708

    PubMed  CAS  Google Scholar 

  • Hill KK, Smith TJ, Helma CH, Ticknor LO, Foley BT, Svensson RT, Brown JL, Johnson EA, Smith LA, Okinaka RT, Jackson PJ, Marks JD (2007) Genetic diversity among botulinum neurotoxin-producing clostridial strains. J Bacteriol 189(3):818–832

    Article  PubMed  CAS  Google Scholar 

  • Hill KK, Xie G, Foley BT, Smith TJ, Munk AC, Bruce D, Smith LA, Brettin TS, Detter JC (2009) Recombination and insertion events involving the botulinum neurotoxin complex genes in Clostridium botulinum types A, B, E and F and Clostridium butyricum type E strains. BMC Biol 7:66

    Article  PubMed  Google Scholar 

  • Hutson RA, Thompson DE, Collins MD (1993a) Genetic interrelationships of saccharolytic Clostridium botulinum types B, E and F and related clostridia as revealed by small-subunit rRNA gene sequences. FEMS Microbiol Lett 108(1):103–110

    Article  PubMed  CAS  Google Scholar 

  • Hutson RA, Thompson DE, Lawson PA, Schocken-Itturino RP, Bottger EC, Collins MD (1993b) Genetic interrelationships of proteolytic Clostridium botulinum types A, B, and F and other members of the Clostridium botulinum complex as revealed by small-subunit rRNA gene sequences. Antonie Van Leeuwenhoek 64(3–4):273–283

    PubMed  CAS  Google Scholar 

  • Hutson RA, Zhou Y, Collins MD, Johnson EA, Hatheway CL, Sugiyama H (1996) Genetic characterization of Clostridium botulinum type A containing silent type B neurotoxin gene sequences. J Biol Chem 271(18):10786–10792

    Article  PubMed  CAS  Google Scholar 

  • Hyytia E, Hielm S, Bjorkroth J, Korkeala H (1999) Biodiversity of Clostridium botulinum type E strains isolated from fish and fishery products. Appl Environ Microbiol 65(5):2057–2064

    PubMed  CAS  Google Scholar 

  • Jacobson MJ, Lin G, Whittam TS, Johnson EA (2008) Phylogenetic analysis of Clostridium botulinum type A by multi-locus sequence typing. Microbiology 154(Pt 8):2408–2415

    Article  PubMed  CAS  Google Scholar 

  • Keto-Timonen R, Nevas M, Korkeala H (2005) Efficient DNA fingerprinting of Clostridium botulinum types A, B, E, and F by amplified fragment length polymorphism analysis. Appl Environ Microbiol 71(3):1148–1154

    Article  PubMed  CAS  Google Scholar 

  • Leuchs J (1910) Beitraege zur kenntnis des toxins und antitoxins des Bacillus botulinus. Z Hyg Infectionskr 76:55–84

    Article  Google Scholar 

  • Macdonald TE, Helma CH, Shou Y, Valdez YE, Ticknor LO, Foley BT, Davis SW, Hannett GE, Kelly-Cirino CD, Barash JR, Arnon SS, Lindstrom M, Korkeala H, Smith LA, Smith TJ, Hill KK (2011) Analysis of Clostridium botulinum serotype E strains by using multilocus sequence typing, amplified fragment length polymorphism, variable-number tandem-repeat analysis, and botulinum neurotoxin gene sequencing. Appl Environ Microbiol 77(24):8625–8634

    Article  PubMed  CAS  Google Scholar 

  • Marshall KM, Bradshaw M, Pellett S, Johnson EA (2007) Plasmid encoded neurotoxin genes in Clostridium botulinum serotype A subtypes. Biochem Biophys Res Commun 361(1):49–54

    Article  PubMed  CAS  Google Scholar 

  • Meyer KF, Gunnison JB (1929) South African cultures of Cl. botulinum and parabotulinum. XXXVII (with a description of Cl. botulinum type D, N. Sp.) J Inf Dis 45:106–118

    Google Scholar 

  • Moller V, Scheibel I (1960) Preliminary report on the isolation of an apparently new type of Cl. botulinum. Acta Pathol Microbiol Scand 48:80

    Article  PubMed  CAS  Google Scholar 

  • Nakamura S, Okado I, Nakashio S, Nishida S (1977) Clostridium sporogenes isolates and their relationship to C. botulinum based on deoxyribonucleic acid reassociation. J Gen Microbiol 100(2):395–401

    Article  PubMed  CAS  Google Scholar 

  • Nevas M, Lindstrom M, Hielm S, Bjorkroth KJ, Peck MW, Korkeala H (2005) Diversity of proteolytic Clostridium botulinum strains, determined by a pulsed-field gel electrophoresis approach. Appl Environ Microbiol 71(3):1311–1317

    Google Scholar 

  • Nevas M, Lindstrom M, Horman A, Keto-Timonen R, Korkeala H (2006) Contamination routes of Clostridium botulinum in the honey production environment. Environ Microbiol 8(6):1085–1094

    Article  PubMed  Google Scholar 

  • Peck MW, Stringer SC, Carter AT (2011) Clostridium botulinum in the post-genomic era. Food Microbiol 28(2):183–191

    Article  PubMed  Google Scholar 

  • Popoff M-R (1995) Ecology of neurotoxigenic strains of clostridia. In: Montecucco C (ed) Clostridial neurotoxins—the molecular pathogenesis of tetanus and botulism. Current topics in microbiology and immunology, vol 195. Springer, Berlin, pp 1–29

    Google Scholar 

  • Raphael BH, Choudoir MJ, Luquez C, Fernandez R, Maslanka SE (2010) Sequence diversity of genes encoding botulinum neurotoxin type F. Appl Environ Microbiol 76(14):4805–4812

    Article  PubMed  CAS  Google Scholar 

  • Sakaguchi Y, Hayashi T, Kurokawa K, Nakayama K, Oshima K, Fujinaga Y, Ohnishi M, Ohtsubo E, Hattori M, Oguma K (2005) The genome sequence of Clostridium botulinum type C neurotoxin-converting phage and the molecular mechanisms of unstable lysogeny. Proc Natl Acad Sci USA 102(48):17472–17477

    Article  PubMed  CAS  Google Scholar 

  • Sakaguchi Y, Hayashi T, Yamamoto Y, Nakayama K, Zhang K, Ma S, Arimitsu H, Oguma K (2009) Molecular analysis of an extrachromosomal element containing the C2 toxin gene discovered in Clostridium botulinum type C. J Bacteriol 191(10):3282–3291

    Article  PubMed  CAS  Google Scholar 

  • Sebaihia M, Peck MW, Minton NP, Thomson NR, Holden MT, Mitchell WJ, Carter AT, Bentley SD, Mason DR, Crossman L, Paul CJ, Ivens A, Wells-Bennik MH, Davis IJ, Cerdeno-Tarraga AM, Churcher C, Quail MA, Chillingworth T, Feltwell T, Fraser A, Goodhead I, Hance Z, Jagels K, Larke N, Maddison M, Moule S, Mungall K, Norbertczak H, Rabbinowitsch E, Sanders M, Simmonds M, White B, Whithead S, Parkhill J (2007) Genome sequence of a proteolytic (Group I) Clostridium botulinum strain Hall A and comparative analysis of the clostridial genomes. Genome Res 17(7):1082–1092

    Article  PubMed  CAS  Google Scholar 

  • Seddon HR (1922) Bulbar paralysis in cattle due to the action of a toxicogenic bacillus, with a discussion on the relationship of the condition to the forage poisoning (botulism). Jour Compar Path Ther 35:147–190

    Google Scholar 

  • Skarin H, Segerman B (2011) Horizontal gene transfer of toxin genes in Clostridium botulinum: Involvement of mobile elements and plasmids. Mob Genet Elem 1(3):213–215

    Article  Google Scholar 

  • Skarin H, Hafstrom T, Westerberg J, Segerman B (2011) Clostridium botulinum group III: a group with dual identity shaped by plasmids, phages and mobile elements. BMC Genomics 12:185

    Article  PubMed  CAS  Google Scholar 

  • Smith LD, Sugiyama H (1988) Botulinum: the organism, its toxins, the disease. In:Smith LD, Sugiyama H (eds) Charles Thomas, Springfield, IL

    Google Scholar 

  • Smith TJ, Lou J, Geren IN, Forsyth CM, Tsai R, Laporte SL, Tepp WH, Bradshaw M, Johnson EA, Smith LA, Marks JD (2005) Sequence variation within botulinum neurotoxin serotypes impacts antibody binding and neutralization. Infect Immun 73(9):5450–5457

    Article  PubMed  CAS  Google Scholar 

  • Smith TJ, Hill KK, Foley BT, Detter JC, Munk AC, Bruce DC, Doggett NA, Smith LA, Marks JD, Xie G, Brettin TS (2007) Analysis of the neurotoxin complex genes in Clostridium botulinum A1–A4 and B1 strains: BoNT/A3,/Ba4 and/B1 clusters are located within plasmids. PLoS One 2(12):e1271

    Article  PubMed  Google Scholar 

  • Sonnabend O, Sonnabend W, Heinzle R, Sigrist T, Dirnhofer R, Krech U (1981) Isolation of Clostridium botulinum type G and identification of type G botulinal toxin in humans: report of five sudden unexpected deaths. J Infect Dis 143(1):22–27

    Article  PubMed  CAS  Google Scholar 

  • Sonnabend WF, Sonnabend UP, Krech T (1987) Isolation of Clostridium botulinum type G from Swiss soil specimens by using sequential steps in an identification scheme. Appl Environ Microbiol 53(8):1880–1884

    PubMed  CAS  Google Scholar 

  • van Ermengem E (1897) A new anaerobic bacillus and its relation to botulism. (Originally published as “Ueber einen neuen anaëroben Bacillus und seine Beziehungen zum Botulismus” in Zeitschrift für Hygiene und Infektionskrankheiten 26:1–56, 1897.). Rev Infect Dis 1(4):701–719

    Article  Google Scholar 

  • Zhou Y, Sugiyama H, Nakano H, Johnson EA (1995) The genes for the Clostridium botulinum type G toxin complex are on a plasmid. Infect Immun 63(5):2087–2091

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Funding for this research was provided by the Department of Homeland Security Science and Technology Directorate contract HSHQDC-10-C-00139 and NIAID IAA 120.B18. Los Alamos National Laboratory strongly supports academic freedom and a researcher’s right to publish; however the Laboratory as an institution does not necessarily endorse the viewpoint of a publication or guarantee its technical correctness. Opinions, interpretations, conclusions and recommendations are those of the authors and not necessarily endorsed by the U.S. Army, the National Institute of Allergy and Infectious Diseases, or the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen K. Hill .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hill, K.K., Smith, T.J. (2012). Genetic Diversity Within Clostridium botulinum Serotypes, Botulinum Neurotoxin Gene Clusters and Toxin Subtypes. In: Rummel, A., Binz, T. (eds) Botulinum Neurotoxins. Current Topics in Microbiology and Immunology, vol 364. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33570-9_1

Download citation

Publish with us

Policies and ethics