Skip to main content

Identification of Prandtl-Ishlinskii Hysteresis Models Using Modified Particle Swarm Optimization

  • Conference paper
Intelligent Robotics and Applications (ICIRA 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7507))

Included in the following conference series:

  • 4566 Accesses

Abstract

A modified particle swarm optimization algorithm (MPSO) is proposed in this paper. The algorithm is implemented to identify the parameters of the hysteresis nonlinearity, which is described by a modified Prandtl-Ishlinskii model. This new algorithm redefines the global best position and personal best position in the traditional PSO algorithm by an effective informed strategy, in order to balance the exploitation and exploration of the algorithm. Furthermore, a mutation operator is employed to increase the diversity of the particles and prevent premature convergence. Experiments have been conducted to verify the effectiveness of the proposed method. The comparisons with other variants of the PSO demonstrate that the identification of hysteresis based on the MPSO is effective and feasible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Salapaka, S.M., Salapaka, M.V.: Scanning Probe Microscopy. IEEE Control Systems 28(2), 65–83 (2008)

    Article  Google Scholar 

  2. Leang, K.K., Devasia, S.: Design of hysteresis-compensating iterative learning control for piezo-positioners: Application to atomic force microscopes. Mechatronics 16(3-4), 141–158 (2006)

    Article  Google Scholar 

  3. Gu, G.Y., Zhu, L.M.: High-speed tracking control of piezoelectric actuators using an ellipse-based hysteresis model. Review of Scientific Instruments 81(8), 0851041–0851049 (2010)

    Google Scholar 

  4. Ha, J.L., Kung, Y.S., Fung, R.F., Hsien, S.C.: A comparison of fitness functions for the identification of a piezoelectric hysteretic actuator based on the real-coded genetic algorithm. Sensors and Actuators A: Physical 132(2), 643–650 (2006)

    Article  Google Scholar 

  5. Xu, Q., Li, Y.: Dahl Model-Based Hysteresis Compensation and Precise Positioning Control of an XY Parallel Micromanipulator With Piezoelectric Actuation. Journal of Dynamic Systems, Measurement, and Control 132, 041011 (2010)

    Google Scholar 

  6. Bernard, Y., Mendes, E., Bouillault, F.: Dynamic hysteresis modeling based on Preisach model. IEEE Transactions on Magnetics 38(2), 885–888 (2002)

    Article  Google Scholar 

  7. Kuhnen, K.: Modeling, Identification and Compensation of Complex Hysteretic Nonlinearities A modified Prandtl-Ishlinskii Approach. European Journal of Control 9(4), 407–418 (2003)

    Article  Google Scholar 

  8. Al Janaideh, M., Rakheja, S., Su, C.Y.: An Analytical Generalized Prandtl-Ishlinskii Model Inversion for Hysteresis Compensation in Micropositioning Control. IEEE/ASME Transactions on Mechatronics 16(4), 734–744 (2011)

    Article  Google Scholar 

  9. Jiang, H., Ji, H., Qiu, J., Chen, Y.: A modified prandtl-ishlinskii model for modeling asymmetric hysteresis of piezoelectric actuators. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control 57(5), 1200–1210 (2010)

    Article  Google Scholar 

  10. Gu, G.Y., Zhu, L.M.: Modeling of rate-dependent hysteresis in piezoelectric actuators using a family of ellipses. Sensors and Actuators: A. Physical 157(2), 303–309 (2011)

    Article  Google Scholar 

  11. Li, Q., Chen, W., Wang, Y., Liu, S., Jia, J.: Parameter Identification for PEM Fuel-Cell Mechanism Model Based on Effective Informed Adaptive Particle Swarm Optimization. IEEE Transactions on Industrial Electronics 58(6), 2410–2419 (2011)

    Article  Google Scholar 

  12. Ru, C., Chen, L., Shao, B., Rong, W., Sun, L.: A hysteresis compensation method of piezoelectric actuator: Model, identification and control. Control Engineering Practice 17, 1107–1114 (2009)

    Article  Google Scholar 

  13. Chan, C.H., Liu, G.: Hysteresis identification and compensation using a genetic algorithm with adaptive search space. Mechatronics 17, 391–402 (2007)

    Article  Google Scholar 

  14. Fung, R.F., Hsu, Y.L., Huang, M.S.: System identification of a dual-stage XY precision positioning table. Precision Engineering 33, 71–80 (2009)

    Article  Google Scholar 

  15. Kao, C.C., Fung, R.F.: Using the modified PSO method to identify a Scott-Russell mechanism actuated by a piezoelectric element. Mechanical Systems and Signal Processing 23, 1652–1661 (2009)

    Article  Google Scholar 

  16. Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. In: Proceedings of the 6th International Symposium on Micro Machine and Human Science, MHS 1995, pp. 39–43 (1995)

    Google Scholar 

  17. Shi, Y., Eberhart, R.: A modified particle swarm optimizer. In: The 1998 IEEE International Conference on Evolutionary Computation Proceedings, IEEE World Congress on Computational Intelligence, pp. 69–73 (1998)

    Google Scholar 

  18. Clerc, M., Kennedy, J.: The Particle Swarm Explosion, Stability, and Convergence in a Multidimensional Complex Space. IEEE Transactions on Evolutionary Computation 6(1), 58–73 (2001)

    Article  Google Scholar 

  19. Qu, J., Huang, G.: Influence of Objective Function on Parameter Identification Result. In: International Conference on Electric Information and Control Engineering, pp. 2274–2277 (2011)

    Google Scholar 

  20. Ratnaweera, A., Halgamuge, S.K., Watson, H.C.: Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients. IEEE Transactions on Evolutionary Computation 8(3), 240–255 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yang, MJ., Gu, GY., Zhu, LM. (2012). Identification of Prandtl-Ishlinskii Hysteresis Models Using Modified Particle Swarm Optimization. In: Su, CY., Rakheja, S., Liu, H. (eds) Intelligent Robotics and Applications. ICIRA 2012. Lecture Notes in Computer Science(), vol 7507. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33515-0_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33515-0_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33514-3

  • Online ISBN: 978-3-642-33515-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics