Skip to main content

Review of the Literature Related to the Considered RDOPG Applications

  • Chapter
Pro-active Dynamic Vehicle Routing

Part of the book series: Contributions to Management Science ((MANAGEMENT SC.))

  • 1328 Accesses

Abstract

In the literature review, research on dynamic routing problems which covers aspects relevant for RDOPG applications is examined. The major focus is on describing approaches which provide an increased flexibility for integrating newly arriving requests during the execution of the transportation process. Some of the first papers on dynamic routing problems in the literature are introduced and selected reactive real-time control approaches for dynamic routing problems are described. Furthermore, strategies for increasing flexibility in dynamic routing problems which can be found in the literature are presented. The main part of this literature review describes solution approaches which provide flexibility in dynamic routing. In this description, solution approaches are distinguished according to whether they utilize stochastic knowledge or not. Since the objective function in the considered RDOPG applications differs from many other approaches of dynamic routing, special attention is also given to approaches in the literature which utilize related objective functions. After that, approaches in the literature that cover other relevant factors for RDOPG applications are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Zero time defines a time period during which the system state of the considered dynamic process can be assumed to remain constant. Note that the length of this time period is highly application-dependent—in the considered RDOPG applications its length is one second at most.

References

  • Ascheuer, N., Krumke, S. O., & Rambau, J. (2000). Online dial-a-ride problems: minimizing the completion time. In H. Reichel & S. Tison (Eds.), Lecture notes in computer science: Vol. 1770. STACS 2000 (pp. 639–650). Berlin: Springer.

    Chapter  Google Scholar 

  • Attanasio, A., Bregman, J., Ghiani, G., & Manni, E. (2007). Real-time fleet management at Ecourier Ltd. In V. Zeimpekis, G. M. Giaglis, I. Minis & C. D. Tarantilis (Eds.), Operations research/computer science interfaces series: Vol. 38. Dynamic fleet management (pp. 219–238). Boston: Springer. ISBN 978-0-387-71722-7.

    Chapter  Google Scholar 

  • Badeau, P., Guertin, F., Gendreau, M., Potvin, J.-Y., & Taillard, É. D. (1997). A parallel tabu search heuristic for the vehicle routing problem with time windows. Transportation Research. Part C, Emerging Technologies, 5(2), 109–122.

    Article  Google Scholar 

  • Baldacci, R., Toth, P., & Vigo, D. (2007). Recent advances in vehicle routing exact algorithms. 4OR: A Quarterly Journal of Operations Research, 5(4), 269–298.

    Article  Google Scholar 

  • Barceló, J., Grzybowska, H., & Pardo, S. (2007). Vehicle routing and scheduling models, simulation and city logistics. In V. Zeimpekis, G. M. Giaglis, I. Minis & C. D. Tarantilis (Eds.), Operations research/computer science interfaces series: Vol. 38. Dynamic fleet management (pp. 163–195). Boston: Springer. ISBN 978-0-387-71722-7.

    Chapter  Google Scholar 

  • Bauer, R., Delling, D., Sanders, P., Schieferdecker, D., Schultes, D., & Wagner, D. (2008). Combining hierarchical and goal-directed speed-up techniques for Dijkstra’s algorithm. In C. McGeoch (Ed.), Lecture notes in computer science: Vol. 5038. Experimental algorithms (pp. 303–318). Berlin: Springer.

    Chapter  Google Scholar 

  • Bell, W. J., Dalberto, L. M., Fisher, M. L., Greenfield, A. J., Jaikumar, R., Kedia, P., Mack, R. G., & Prutzman, P. J. (1983). Improving the distribution of industrial gases with an on-line computerized routing and scheduling optimizer. Interfaces, 13(6), 4–23.

    Article  Google Scholar 

  • Bent, R., & van Hentenryck, P. (2003). Dynamic vehicle routing with stochastic requests. In Proceedings of the eighteenth international joint conference on artificial intelligence (IJCAI-2003), Acapulco, Mexico (pp. 1362–1363).

    Google Scholar 

  • Bent, R., & van Hentenryck, P. (2004a). A two-stage hybrid local search for the vehicle routing problem with time windows. Transportation Science, 38(4), 515–530.

    Article  Google Scholar 

  • Bent, R., & van Hentenryck, P. (2004b). Scenario-based planning for partially dynamic vehicle routing with stochastic customers. Operations Research, 52(6), 977–987.

    Article  Google Scholar 

  • Bent, R., & van Hentenryck, P. (2004c). Regrets only! online stochastic optimization under time constraints. In Proceedings of the nineteenth national conference on artificial intelligence (AAAI-2004), San Jose, California (pp. 501–506).

    Google Scholar 

  • Bent, R., & van Hentenryck, P. (2005). Online stochastic optimization without distributions. In Proceedings of the fifteenth international conference on automated planning and scheduling (ICAPS-2005), Monterey, California (pp. 171–180).

    Google Scholar 

  • Bent, R., & van Hentenryck, P. (2007). Waiting and relocation strategies in online stochastic vehicle routing. In Proceedings of the twentieth international joint conference on artificial intelligence (IJCAI 2007), Hyderabad, India (pp. 1816–1821).

    Google Scholar 

  • Bent, R., Katriel, I., & van Hentenryck, P. (2005). Sub-optimality approximations. In P. van Beek (Ed.), Lecture notes in computer science: Vol. 3709. Principles and practice of constraint programming—CP 2005 (pp. 122–136). Berlin: Springer.

    Chapter  Google Scholar 

  • Bent, R., van Hentenryck, P., & Upfal, E. (2010). Online stochastic optimization under time constraints. Annals of Operations Research, 177(1), 151–183.

    Article  Google Scholar 

  • Berbeglia, G., Cordeau, J. F., & Laporte, G. (2010). Dynamic pickup and delivery problems. European Journal of Operational Research, 202(1), 8–15.

    Article  Google Scholar 

  • Bertsimas, D. J., & van Ryzin, G. V. (1991). A stochastic and dynamic vehicle routing problem in the Euclidean plane. Operations Research, 39(4), 601–615.

    Article  Google Scholar 

  • Bertsimas, D. J., & van Ryzin, G. V. (1993a). Stochastic and dynamic vehicle routing in the Euclidean plane with multiple capacitated vehicles. Operations Research, 41(1), 60–76.

    Article  Google Scholar 

  • Bertsimas, D. J., & van Ryzin, G. V. (1993b). Stochastic and dynamic vehicle routing with general demand and interarrival time distributions. Advances in Applied Probability, 25(4), 947–978.

    Article  Google Scholar 

  • Bianchi, L. (2000). Notes on dynamic vehicle routing—the state of the art (Technical report IDSIA-05-01). Manno-Lugano, Switzerland.

    Google Scholar 

  • Biethahn, J., Hummeltenberg, W., Schmidt, B., Stähly, P., & Witte, T. (1999). Simulation als betriebliche Entscheidungshilfe: State of the Art und neuere Entwicklungen. Heidelberg: Physica-Verlag. ISBN 3790811785.

    Book  Google Scholar 

  • Bock, S. (2010). Real-time control of freight forwarder transportation networks by integrating multimodal transport chains. European Journal of Operational Research, 200(3), 733–746.

    Article  Google Scholar 

  • Branchini, R. M., Vinícius, A. A., & Løkketangen, A. (2009). Adaptive granular local search heuristic for a dynamic vehicle routing problem. Computers & Operations Research, 36(11), 2955–2968.

    Article  Google Scholar 

  • Branke, J., Middendorf, M., Noeth, G., & Dessouky, M. (2005). Waiting strategies for dynamic vehicle routing. Transportation Science, 39(3), 298–312.

    Article  Google Scholar 

  • Cathey, F. W., & Dailey, D. J. (2003). A prescription for transit arrival/departure prediction using automatic vehicle location data. Transportation Research. Part C, Emerging Technologies, 11(3-4), 241–264.

    Article  Google Scholar 

  • Chang, H., Givan, R., & Chong, E. (2000). On-line scheduling via sampling. In Artificial intelligence planning and scheduling (AIPS), Breckenridge, Colorado (pp. 62–71).

    Google Scholar 

  • Cordeau, J. F., & Laporte, G. (2003). The dial-a-ride problem (DARP): variants, modeling issues and algorithms. 4OR: A Quarterly Journal of Operations Research, 1(2), 89–101.

    Article  Google Scholar 

  • Cordeau, J. F., & Laporte, G. (2007). The dial-a-ride problem: models and algorithms. Annals of Operations Research, 153(1), 29–46.

    Article  Google Scholar 

  • Cordeau, J. F., Gendreau, M., Hertz, A., Laporte, G., & Sormany, J. S. (2005). New heuristics for the vehicle routing problem. In A. Langevin & D. Riopel (Eds.), Logistics systems: design and optimization (pp. 279–297). New York: Springer. ISBN 978-0-387-24977-3.

    Chapter  Google Scholar 

  • Cordeau, J. F., Laporte, G., Potvin, J.-Y., & Savelsbergh, M. W. P. (2007a). Transportation on demand. In C. Barnhart (Ed.), Handbooks in operations research and management science: Vol. 14. Transportation (pp. 429–466). Amsterdam: Elsevier/North-Holland. ISBN 0444513469.

    Chapter  Google Scholar 

  • Cortés, C. E., Núñez, A., & Sáez, D. (2008). Hybrid adaptive predictive control for a dynamic pickup and delivery problem including traffic congestion. International Journal of Adaptive Control and Signal Processing, 22(2), 103–123.

    Article  Google Scholar 

  • Cortés, C. E., Sáez, D., Núñez, A., & Muòoz-Carpintero, D. (2009). Hybrid adaptive predictive control for a dynamic pickup and delivery problem. Transportation Science, 43(1), 27–42.

    Article  Google Scholar 

  • Davis, M. M., & Maggard, M. J. (1990). An analysis of customer satisfaction with waiting times in a two-stage service process. Journal of Operations Management, 9(3), 324–334.

    Article  Google Scholar 

  • de Oliveira, H. C. B., Rocha, G. M., de Souza, M. M., Ciscon, L. A., Borges, V. R., & Mateus, G. R. (2008). A vehicular waiting time heuristic for dynamic vehicle routing problem. In Proceedings of the 2008 ACM symposium on applied computing (SAC ’08) (pp. 13–17). New York: ACM.

    Chapter  Google Scholar 

  • Desrochers, M., Lenstra, J. K., Savelsbergh, M. W. P., & Soumis, F. (1988). Vehicle routing with time windows: optimization and approximation. In Vehicle routing: Methods and studies (pp. 65–84). Amsterdam: North-Holland.

    Google Scholar 

  • Desrosiers, J., Dumas, Y., Solomon, M. M., & Soumis, F. (1995). Time constrained routing and scheduling. In M. O. Ball, T. L. Magnanti, C. L. Monma & G. L. Nemhauser (Eds.), Handbooks in operations research and management science: Vol. 8. Network routing (pp. 35–139). Amsterdam: North-Holland. ISBN 978-0444821416.

    Chapter  Google Scholar 

  • Dumas, Y., Soumis, F., & Desrosiers, J. (1990). Technical note—optimizing the schedule for a fixed vehicle path with convex inconvenience costs. Transportation Science, 24(2), 145–152.

    Article  Google Scholar 

  • Ehmke, J. F., Meisel, S., Engelmann, S., & Mattfeld, D. C. (2009). Data chain management for planning in city logistics. International Journal of Data Mining, Modelling and Management, 1(4), 335–356.

    Article  Google Scholar 

  • Ehmke, J. F., Meisel, S., & Mattfeld, D. C. (2010). Floating car data based analysis of urban travel times for the provision of traffic quality. In J. Barceló & M. Kuwahara (Eds.), International series in operations research & management science: Vol. 144. Traffic data collection and its standardization (pp. 129–149). New York: Springer. ISBN 978-1-4419-6070-2.

    Chapter  Google Scholar 

  • Eksioglu, B., Vural, A. V., & Reisman, A. (2009). The vehicle routing problem: a taxonomic review. Computers & Industrial Engineering, 57(4), 1472–1483.

    Article  Google Scholar 

  • El-Sherbeny, N. A. (2010). Vehicle routing with time windows: an overview of exact, heuristic and metaheuristic methods. Journal of King Saud University: Computer and Information Sciences, 22(3), 123–131.

    Article  Google Scholar 

  • Fagerholt, K. (2000). Evaluating the trade-off between the level of customer service and transportation costs in a ship scheduling problem. Maritime Policy and Management, 27(2), 145–153.

    Article  Google Scholar 

  • Fagerholt, K. (2001). Ship scheduling with soft time windows: an optimisation based approach. European Journal of Operational Research, 131(3), 559–571.

    Article  Google Scholar 

  • Ferrucci, F. (2006). Entwicklung und Validierung einer Echtzeitsteuerung für realitätsnahe Pickup-and-Delivery-Probleme. Diploma Thesis, University of Paderborn.

    Google Scholar 

  • Flatberg, T., Hasle, G., Kloster, O., Nilssen, E. J., & Riise, A. (2005). Dynamic and stochastic aspects in vehicle routing: a literature survey (Technical report STF90A05413 SINTEF). Oslo, Norway.

    Google Scholar 

  • Fleischmann, B., Gnutzmann, S., & Sandvoß, E. (2004b). Dynamic vehicle routing based on online traffic information. Transportation Science, 38(4), 420–433.

    Article  Google Scholar 

  • Gendreau, M., & Potvin, J.-Y. (1998). Dynamic vehicle routing and dispatching. In T. G. Crainic (Ed.), Center for research on transportation 25th anniversary series, 1971–1996. Fleet management and logistics (pp. 115–126). Heidelberg: Springer. ISBN 0792381610.

    Chapter  Google Scholar 

  • Gendreau, M., Laporte, G., & Séguin, R. (1996). Stochastic vehicle routing. European Journal of Operational Research, 88(1), 3–12.

    Article  Google Scholar 

  • Gendreau, M., Guertin, F., Potvin, J.-Y., & Séguin, R. (1998). Neighborhood search heuristics for a dynamic vehicle dispatching problem with pick-ups and deliveries (Technical Report CRT-98-10). Centre de Recherche sur les Transport (CRT), Universite de Montreal.

    Google Scholar 

  • Gendreau, M., Guertin, F., Potvin, J.-Y., & Taillard, É. D. (1999a). Parallel tabu search for real-time vehicle routing and dispatching. Transportation Science, 33(4), 381–390.

    Article  Google Scholar 

  • Gendreau, M., Laporte, G., & Semet, F. (2001). A dynamic model and parallel tabu search heuristic for real-time ambulance relocation. Parallel Computing, 27(12), 1641–1653.

    Article  Google Scholar 

  • Gendreau, M., Guertin, F., Potvin, J.-Y., & Séguin, R. (2006). Neighborhood search heuristics for a dynamic vehicle dispatching problem with pick-ups and deliveries. Transportation Research. Part C, Emerging Technologies, 14(3), 157–174.

    Article  Google Scholar 

  • Ghiani, G., Guerriero, F., Laporte, G., & Musmanno, R. (2003). Real-time vehicle routing: solution concepts, algorithms and parallel computing strategies. European Journal of Operational Research, 151(1), 1–11.

    Article  Google Scholar 

  • Ghiani, G., Manni, E., Quaranta, A., & Triki, C. (2009). Anticipatory algorithms for same-day courier dispatching. Transportation Research. Part E, Logistics and Transportation Review, 45(1), 96–106.

    Article  Google Scholar 

  • Ghiani, G., Manni, E., & Thomas, B. W. (2012). A comparison of anticipatory algorithms for the dynamic and stochastic Traveling Salesman Problem. Transportation Science, 46(3), 374–387.

    Article  Google Scholar 

  • Giaglis, G. M., Minis, I., Tatarakis, A., & Zeimpekis, V. (2004). Minimizing logistics risk through real-time vehicle routing and mobile technologies. International Journal of Physical Distribution & Logistics Management, 34(9), 749–764.

    Article  Google Scholar 

  • Godfrey, G. A., & Powell, W. B. (2002). An adaptive dynamic programming algorithm for dynamic fleet management, I: single period travel times. Transportation Science, 36(1), 21–39.

    Article  Google Scholar 

  • Haghani, A., & Yang, S. (2007). Real-time emergency response fleet deployment: concepts, systems, simulation & case studies. In V. Zeimpekis, G. M. Giaglis, I. Minis & C. D. Tarantilis (Eds.), Operations research/computer science interfaces series: Vol. 38. Dynamic fleet management (pp. 133–162). Boston: Springer. ISBN 978-0-387-71722-7.

    Chapter  Google Scholar 

  • Hvattum, L. M., Løkketangen, A., & Laporte, G. (2006). Solving a dynamic and stochastic vehicle routing problem with a sample scenario hedging heuristic. Transportation Science, 40(4), 421–438.

    Article  Google Scholar 

  • Hvattum, L. M., Løkketangen, A., & Laporte, G. (2007). A branch-and-regret heuristic for stochastic and dynamic vehicle routing problems. Networks, 49(4), 330–340.

    Article  Google Scholar 

  • Ichoua, S. (2001). Problèmes de gestion de flottes de véhicules en temps réel. PhD thesis, Université de Montréal, Montréal, Canada.

    Google Scholar 

  • Ichoua, S., Gendreau, M., & Potvin, J.-Y. (2000). Diversion issues in real-time vehicle dispatching. Transportation Science, 34(4), 426–438.

    Article  Google Scholar 

  • Ichoua, S., Gendreau, M., & Potvin, J.-Y. (2006). Exploiting knowledge about future demands for real-time vehicle dispatching. Transportation Science, 40(2), 211–225.

    Article  Google Scholar 

  • Ichoua, S., Gendreau, M., & Potvin, J.-Y. (2007). Planned route optimization for real-time vehicle routing. In V. Zeimpekis, G. M. Giaglis, I. Minis & C. D. Tarantilis (Eds.), Operations research/computer science interfaces series: Vol. 38. Dynamic fleet management (pp. 1–18). Boston: Springer. ISBN 978-0-387-71722-7.

    Chapter  Google Scholar 

  • Irani, S., Lu, X., & Regan, A. (2004). On-line algorithms for the dynamic traveling repair problem. Journal of Scheduling, 7(3), 243–258.

    Article  Google Scholar 

  • Jula, H., Dessouky, M., & Ioannou, P. A. (2008). Real-time estimation of travel times along the arcs and arrival times at the nodes of dynamic stochastic networks. IEEE Transactions on Intelligent Transportation Systems, 9(1), 97–110.

    Article  Google Scholar 

  • Kendall, D. G. (1953). Stochastic processes occurring in the theory of queues and their analysis by the method of the imbedded Markov chain. The Annals of Mathematical Statistics, 24(3), 338–354.

    Article  Google Scholar 

  • Kilby, P., Prosser, P., & Shaw, P. (1998). Dynamic VRPs: a study of scenarios (Technical Report APES-06-1998). University of Strathclyde.

    Google Scholar 

  • Klein Haneveld, W. K., & van der Vlerk, M. H. (1999). Stochastic integer programming: general models and algorithms. Annals of Operations Research, 85, 39–57.

    Article  Google Scholar 

  • Kleywegt, A. J., Savelsbergh, M., & Uyar, E. (2009). A dynamic stochastic routing problem (Technical Report). Georgia Institute of Technology, Atlanta, GA.

    Google Scholar 

  • Kristensen, K., Kanji, G. K., & Dahlgaard, J. J. (1992). On measurement of customer satisfaction. Total Quality Management & Business Excellence, 3(2), 123–128.

    Article  Google Scholar 

  • Krumke, S. O., Rambau, J., & Torres, L. M. (2002). Real-time dispatching of guided and unguided automobile service units with soft time windows. In R. Möhring & R. Raman (Eds.), Lecture notes in computer science: Vol. 2461. Algorithms—ESA 2002 (pp. 417–424). Heidelberg: Springer.

    Google Scholar 

  • Lackner, A. (2004). Göttinger Wirtschaftsinformatik: Vol. 47. Dynamische Tourenplanung mit ausgewählten Metaheuristiken: Eine Untersuchung am Beispiel des kapazitätsrestriktiven dynamischen Tourenplanungsproblems mit Zeitfenstern: Univ., Diss.–Göttingen, 2004 (1st ed.). Göttingen: Cuvillier. ISBN 3865370845.

    Google Scholar 

  • Laporte, G. (1992a). The vehicle routing problem: an overview of exact and approximate algorithms. European Journal of Operational Research, 59(3), 345–358.

    Article  Google Scholar 

  • Larsen, A. (2000). The dynamic vehicle routing problem. PhD Thesis, Technical University of Denmark, Lyngby, Denmark.

    Google Scholar 

  • Larsen, A., Madsen, O. B. G., & Solomon, M. M. (2002). Partially dynamic vehicle routing—models and algorithms. Journal of the Operational Research Society, 53(6), 637–646.

    Article  Google Scholar 

  • Larsen, A., Madsen, O. B. G., & Solomon, M. M. (2004). The a priori dynamic Traveling Salesman Problem with time windows. Transportation Science, 38(4), 459–472.

    Article  Google Scholar 

  • Larsen, A., Madsen, O. B. G., & Solomon, M. M. (2007). Classification of dynamic vehicle routing systems. In V. Zeimpekis, G. M. Giaglis, I. Minis & C. D. Tarantilis (Eds.), Operations research/computer science interfaces series: Vol. 38. Dynamic fleet management (pp. 19–40). Boston: Springer. ISBN 978-0-387-71722-7.

    Chapter  Google Scholar 

  • Larsen, A., Madsen, O. B. G., & Solomon, M. M. (2008). Recent developments in dynamic vehicle routing systems. In B. L. Golden, S. Raghavan & E. A. Wasil (Eds.), Operations research/computer science interfaces series: Vol. 43. The vehicle routing problem: latest advances and new challenges (pp. 199–218). Heidelberg: Springer. ISBN 0387777776.

    Chapter  Google Scholar 

  • Larson, R. C., & Odoni, A. R. (1981). Urban operations research. Englewood Cliffs: Prentice-Hall. http://web.mit.edu/urban_or_book/www/book/.

    Google Scholar 

  • Law, A. M., & Kelton, W. D. (2000). McGraw-Hill series in industrial engineering and management science. Simulation modeling and analysis (3rd ed.). Boston: McGraw-Hill. ISBN 0070592926.

    Google Scholar 

  • Lund, K., Madsen, O. B. G., & Rygaard, J. M. (1996). Vehicle routing with varying degrees of dynamism (Technical report IMM-REP-1996-1). Institute of Mathematical Modelling, Technical University of Denmark, Lyngby, Denmark.

    Google Scholar 

  • Markus, K. G. (2009). Online stochastic vehicle routing. Master’s Thesis, Department of Mathematics and Computer Science (IMADA), University of Southern Denmark.

    Google Scholar 

  • Mihram, G. A. (1972). Mathematics in science and engineering: Vol. 92. Simulation: statistical foundations and methodology. New York: Academic Press. ISBN 0124959504.

    Google Scholar 

  • Mintsis, G., Basbas, S., Papaioannou, P., Taxiltaris, C., & Tziavos, I. N. (2004). Applications of GPS technology in the land transportation system: new technologies in transportation systems. European Journal of Operational Research, 152(2), 399–409.

    Article  Google Scholar 

  • Mitrovic-Minic, S., & Laporte, G. (2004). Waiting strategies for the dynamic pickup and delivery problem with time windows. Transportation Research. Part B: Methodological, 38(7), 635–655.

    Article  Google Scholar 

  • Mitrovic-Minic, S., Krishnamurti, R., & Laporte, G. (2004). Double-horizon based heuristics for the dynamic pickup and delivery problem with time windows. Transportation Research. Part B: Methodological, 38(8), 669–685.

    Article  Google Scholar 

  • Novoa, C., & Storer, R. (2009). An approximate dynamic programming approach for the vehicle routing problem with stochastic demands. European Journal of Operational Research, 196(2), 509–515.

    Article  Google Scholar 

  • Núñez, A., Sáez, D., & Cortés, C. E. (2008). Hybrid predictive control for the vehicle dynamic routing problem based on Evolutionary Multiobjective Optimization (EMO). In 17th IFAC world congress, Seoul, Korea.

    Google Scholar 

  • Pankratz, G. (2002). Speditionelle Transportdisposition: Modell- und Verfahrensentwicklung unter Berücksichtigung von Dynamik und Fremdvergabe. Diss. FernUniv. Hagen. Wiesbaden: Deutscher Universitätsverlag. ISBN 3824476681.

    Google Scholar 

  • Papastavrou, J. D. (1996). A stochastic and dynamic routing policy using branching processes with state dependent immigration. European Journal of Operational Research, 95(1), 167–177.

    Article  Google Scholar 

  • Pillac, V., Guéret, A., & Medaglia, A. (2010). Vehicle routing problems: state of the art and prospects (Technical report, 10/4/AUTO). Ecole des Mines de Nantes, France.

    Google Scholar 

  • Powell, W. B. (1988). A comparative review of alternative algorithms for the dynamic vehicle allocation problem. In B. L. Golden (Ed.), Studies in management science and systems. Vehicle routing (pp. 249–291). Amsterdam: Elsevier. ISBN 0444704078.

    Google Scholar 

  • Powell, W. B. (1996). A stochastic formulation of the dynamic assignment problem, with an application to truckload motor carriers. Transportation Science, 30(3), 195–219.

    Article  Google Scholar 

  • Powell, W. B. (2007). Approximate dynamic programming: solving the curses of dimensionality. Hoboken: Wiley-Interscience. ISBN 0470171553.

    Book  Google Scholar 

  • Powell, W. B. (2009). What you should know about approximate dynamic programming. Naval Research Logistics, 56(3), 239–249.

    Article  Google Scholar 

  • Powell, W. B., & Topaloglu, H. (2005). Fleet management. In S. W. Wallace & W. T. Ziemba (Eds.), MPS-SIAM series on optimization: Vol. 5. Applications of stochastic programming (pp. 185–215). Philadelphia: Society for Industrial and Applied Mathematics. ISBN 0898715555.

    Chapter  Google Scholar 

  • Powell, W. B., Jaillet, P., & Odoni, A. (1995). Stochastic and dynamic networks and routing. In Handbooks in operations research and management science (Vol. 8, pp. 141–295).

    Google Scholar 

  • Psaraftis, H. N. (1980). Dynamic programming solution to the single vehicle many-to-many immediate request dial-a-ride problem. Transportation Science, 14(2), 130–154.

    Article  Google Scholar 

  • Psaraftis, H. N. (1988). Dynamic vehicle routing problems. In B. L. Golden (Ed.), Studies in management science and systems. Vehicle routing (pp. 223–248). Amsterdam: Elsevier. ISBN 0444704078.

    Google Scholar 

  • Psaraftis, H. N. (1995). Dynamic vehicle routing: status and prospects. Annals of Operations Research, 61(1), 143–164.

    Article  Google Scholar 

  • Pureza, V., & Laporte, G. (2008). Waiting and buffering strategies for the dynamic pickup and delivery problem with time windows. INFOR. Information Systems and Operational Research, 46(3), 165–176.

    Article  Google Scholar 

  • Regan, A. C., Mahmassani, H. S., & Jaillet, P. (1995). Improving efficiency of commercial vehicle operations using real-time information: potential uses and assignment strategies. Transportation Research Record, 1493, 188–198.

    Google Scholar 

  • Regan, A. C., Mahmassani, H. S., & Jaillet, P. (1998). Evaluation of dynamic fleet management systems: simulation framework. Transportation Research Record, 1645, 176–184.

    Article  Google Scholar 

  • Richter, A. (2005). Dynamische Tourenplanung: Modifikation von klassischen Heuristiken für das Dynamische Rundreiseproblem (DTSP) und das Dynamische Tourenplanungsproblem (DVRP) mit der Möglichkeit der Änderung des aktuellen Fahrzeugzuges. PhD Thesis, University of Dresden, Germany.

    Google Scholar 

  • Sáez, D., Cortés, C. E., & Núñez, A. (2008). Hybrid adaptive predictive control for the multi-vehicle dynamic pick-up and delivery problem based on genetic algorithms and fuzzy clustering. Computers & Operations Research, 35(11), 3412–3438.

    Article  Google Scholar 

  • Savelsbergh, M. W. P. (1992). The vehicle routing problem with time windows: minimizing route duration. ORSA Journal on Computing, 4, 146–154.

    Article  Google Scholar 

  • Schmid, V. (2012). Solving the dynamic ambulance relocation and dispatching problem using approximate dynamic programming. European Journal of Operational Research, 219(3), 611–621.

    Article  Google Scholar 

  • Schmidt, J. W., & Taylor, R. E. (1970). Simulation and analysis of industrial systems. Homewood: Richard D. Irwin.

    Google Scholar 

  • Schultes, D. (2008). Route Planning in Road Networks. PhD Thesis, Karlsruhe Institute of Technology.

    Google Scholar 

  • Secomandi, N., & Margot, F. (2009). Reoptimization approaches for the vehicle-routing problem with stochastic demands. Operations Research, 57(1), 214–230.

    Article  Google Scholar 

  • Séguin, R., Potvin, J.-Y., Gendreau, M., Crainic, T. G., & Marcotte, P. (1997). Real-time decision problems: an operational research perspective. Journal of the Operational Research Society, 48(2), 162–174.

    Google Scholar 

  • Sexton, T., & Choi, Y. (1986). Pickup and delivery of partial loads with “soft” time windows. American Journal of Mathematical and Management Sciences, 6(3-4), 369–398.

    Google Scholar 

  • Sexton, T. R., & Bodin, L. D. (1985). Optimizing single vehicle many-to-many operations with desired delivery times: I. scheduling. Transportation Science, 19(4), 378–410.

    Article  Google Scholar 

  • Swihart, M. R., & Papastavrou, J. D. (1999). A stochastic and dynamic model for the single-vehicle pick-up and delivery problem. European Journal of Operational Research, 114(3), 447–464.

    Article  Google Scholar 

  • Tarantilis, C. D., Diakoulaki, D., & Kiranoudis, C. T. (2004). Combination of geographical information system and efficient routing algorithms for real life distribution operations: new technologies in transportation systems. European Journal of Operational Research, 152(2), 437–453.

    Article  Google Scholar 

  • Thomas, B. W. (2007). Waiting strategies for anticipating service requests from known customer locations. Transportation Science, 41(3), 319–331.

    Article  Google Scholar 

  • Thomas, B. W., & White III, C. C. (2004). Anticipatory route selection. Transportation Science, 38(4), 473–487.

    Article  Google Scholar 

  • Tijms, H. C. (2003). A first course in stochastic models (2nd ed.). Chichester: Wiley.

    Book  Google Scholar 

  • Toth, P., & Vigo, D. (Eds.) (2002). SIAM monographs on discrete mathematics and applications. The vehicle routing problem. Philadelphia: Society for Industrial and Applied Mathematics. ISBN 0898714982.

    Google Scholar 

  • Uyar, E. (2008). Routing in stochastic environments. PhD Thesis, Georgia Institute of Technology.

    Google Scholar 

  • van de Klundert, J., & Wormer, L. (2010). ASAP: the After-Salesman Problem. Manufacturing & Service Operations Management, 12, 627–641.

    Article  Google Scholar 

  • van Hemert, J. I., & La Poutré, J. A. (2004). Dynamic routing problems with fruitful regions: models and evolutionary computation. In X. Yao, E. Burke, J. A. Lozano, J. Smith, J. J. Merelo-Guervós, J. A. Bullinaria, J. Rowe, P. Tino, A. Kabán & H.-P. Schwefel (Eds.), Lecture notes in computer science: Vol. 3242. Parallel Problem Solving from Nature—PPSN VIII (pp. 692–701). Berlin: Springer.

    Chapter  Google Scholar 

  • van Hentenryck, P., & Bent, R. (2009). Online stochastic combinatorial optimization. Cambridge: MIT Press. ISBN 0262513471.

    Google Scholar 

  • Westphal, S., & Krumke, S. O. (2008). Pruning in column generation for service vehicle dispatching. Annals of Operations Research, 159(1), 355–371.

    Article  Google Scholar 

  • Wilson, N. H. M., & Colvin, N. J. (1977). Computer control of the Rochester dial-a-ride system (Technical report R-77-30). Department of Civil Engineering, Massachusetts Institute of Technology, Center for Transportation Studies, Cambridge, MA.

    Google Scholar 

  • Xu, R. (2005). Survey of clustering algorithms. IEEE Transactions on Neural Networks, 16(3), 645–678.

    Article  Google Scholar 

  • Yang, J., Jaillet, P., & Mahmassani, H. S. (2004). Real-time multivehicle truckload pickup and delivery problems. Transportation Science, 38(2), 135–148.

    Article  Google Scholar 

  • Yang, W. H., Mathur, K., & Ballou, R. H. (2000). Stochastic vehicle routing problem with restocking. Transportation Science, 34(1), 99–112.

    Article  Google Scholar 

  • Zeimpekis, V., & Giaglis, G. M. (2005). A dynamic real-time vehicle routing system for distribution operations. In G. J. Doukidis & A. P. Vrechopoulos (Eds.), Consumer driven electronic transformation (pp. 23–37). Berlin: Springer. ISBN 978-3-540-27059-1.

    Chapter  Google Scholar 

  • Zeimpekis, V., Giaglis, G. M., & Minis, I. (2005). A dynamic real-time fleet management system for incident handling in city logistics. In IEEE 61st vehicular technology conference, VTC 2005-Spring, Stockholm, Sweden (Vol. 5, pp. 2900–2904).

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ferrucci, F. (2013). Review of the Literature Related to the Considered RDOPG Applications. In: Pro-active Dynamic Vehicle Routing. Contributions to Management Science. Physica, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33472-6_4

Download citation

Publish with us

Policies and ethics